

APPENDIX 32B

Reproductions of Comments on the Draft EIS

Comments 13308-13321

COMMENT #:	13308
DATE:	8/18/21 12:00 PM
SOURCE:	Mailed
NAME:	Derek Miller

SALT EST. 1887 CHAMBER UTAH'S BUSINESS LEADER	
August 16, 2021	
Little Cottonwood Canyon EIS c/o HDR 2825 E Cottonwood Parkway, Suite 200	
Salt Lake City, UT 84121 As a native Utahn, I've enjoyed the enviable quality of life this state has to offer. In my career, I've touted that	
quality of life to businesses and visitors as a reason to come here to work and play. A key element to that quality is the access to our magnificent mountains, particularly the Cottonwood Canyons. But as Utah grows, we are facing challenges that must be addressed now and with thoughtful planning.	
The transportation issues of Little Cottonwood Canyon are at a tipping point and we need a reliable system that can stand the test of time. The Salt Lake Chamber has long been a champion for Utah's multimodal transportation system, which is represented in both the preferred alternatives presented in the Draft EIS. However, i believe one of those alternatives better addresses those challenges, and that is the gondola.	32.2.9D
The gondola is the only option that would complete the task of moving large amounts of people while also protecting the water supply and air quality. Air quality is a paramount concern and must be a top priority in this decision. Electric ski buses that can traverse the steep canyon do not exist and it is unlikely this niche market will spur their development soon. We have to look to an immediately available carbon-neutral system, which the gondola provides.	32.12A, 32.10A,
The canyons are an economic asset to Utah, and we must have a safe and reliable way of getting employees, visitors, and goods to their destinations at the top. The gondola takes road conditions out of the transportation equation, which is a game-changer for this unique location. Even if it has stopped snowing, the very real threat of avalanches and the time it takes to clear debris from the road are minutes that count in terms of impacts to the environment, the economy, and safety.	32.2.6.3F 32.7A 32.2.6.5Z
This came into clear focus for me personally as my wife and I headed up Little Cottonwood Canyon earlier this year to ski. As we crawled up the canyon, traffic soon came to a halt and we sat there in our idling car waiting for traffic to move. Minutes ticked by as crews worked to clear the road from avalanche debris. After four hours stuck with no way to move forward or turn around, my wife complained that in this same amount of time we could have driven to St. George 300 miles away. Instead, we sat still on a dangerous road spewing emissions into the air just a few miles away from home.	
201 South Main Street Suite 2300 Salt Lake City, Utah 84111 Phone 801.364.3631 Fax 801.328.5098 www.slchamber.com	

Little Cottonwood Canyon EIS Page 2 August 16, 2021

We can no longer wait. We've brainstormed and studied and talked for years. The time is now to make a decision and take action. Please move forward with the gondola with La Caille Base Station as UDOT's preferred alternative for Little Cottonwood Canyon.

Sincerely,

Seek mille

Derek Miller President & CEO, Salt Lake Chamber 32.2.9D

201 South Main Street | Suite 2300 | Salt Lake City, Utah 84111 | Phone 801.364.3631 | Fax 801.328.5098 www.slchamber.com

COMMENT #:	13309
DATE:	9/1/21 10:54 AM
SOURCE:	Email
NAME:	Brian Tonetti

To Whom it May Concern,

Please see the attached for a letter outlining the Seven Canyons Trust's comments to the Little Cottonwood EIS. Please let me know if you have any questions.

I appreciate your consideration of our letter.

Thank you! --Drian Tanatti

Brian Tonetti Executive Director

	Uncovering & Restoring 😂	
	Our Urban Creeks	
٥	INFO@SEVENCRNYONSTRUST.ORG 585-703-8582 122 J STREET 51C, UT GH02	
	August 24, 2021	
	Utah Department of Transportation 4501 S 2700 W Salt Lake City, UT 84114	
	RE: Little Cottonwood Draft Environmental Impact Statement Comments	
	To Whom It May Concern:	
	The Seven Canyons Trust is a nonprofit working to uncover and restore the buried and impaired creeks in the Salt Lake Valley.	
	We support a solution that first and foremost protects the quality of Little Cottonwood Creek, which flows downstream into our communities. Secondly, we support solutions that provide access for all, bridge our east-west divides, and represent action now. Before spending half a billion in public dollars on either of the two preferred alternatives (money that could be used to enhance transit across the Valley), effort should be made to address traffic congestion through existing resources and infrastructure.	32.2.9A 32.2.2PP
	We must understand the carrying capacity of Little Cottonwood Canyon—the maximum number of people the canyon can handle before resource degradation. A formal study should be done to inform our long-term decision and its impact.	32.20B
	We support an expanded, year-round electric bus system that services dispersed recreation throughout the year, bridging our east-west communities in the Salt Lake Valley, and providing canyon access for all residents. This should be coupled with tolling, carpool requirements, and other traffic mitigation strategies.	32.2.9A, 32.1.2C, 32.2.6.3F, 32.2.6.3C, and
	We do not believe a gondola or road widening is the answer at this point. We should exhaust other less expensive options before pursuing permanent changes to our watershed and landscape.	32.2.4A 32.2.9E and 32.2.9C
	We stand with Save Our Canyons, Wasatch Backcountry Alliance, Salt Lake Climbers Alliance, and many others who share similar perspectives on the Environmental Impact Statement.	32.12A 32.12B
	AUST CALLER	
	IT STARTS WITH WATER • WWW.SEVENCANYONSTRUST.ORG	
	C C BEVENCENVONSTRUST	

Uncovering & Restoring Our Urban Creeks

INFO@SEVENCANYONSTRUST.ORG 585-703-8582 122 J STREET SLC, UT 84102

0

I appreciate your consideration of our letter!

Sincerely,

3 F 1-**BRIAN TONETTI**

Executive Director

IT STARTS WITH WATER • WWW.SEVENCANYONSTRUST.ORG

E BEVENCANYONSTRUST

COMMENT #:	13310
DATE:	9/1/21 4:09 PM
SOURCE:	Email
NAME:	Chris McCandless

Josh,

As mentioned in our last conversation, attached is the presentation being used by the Gondola Works coalition. We would like this presentation to be part of the public comments considered in the DEIS evaluation.

As you will note, some of the conclusions in the presentation exceeds the UDOT purpose and need statement but, we felt that if the choice was on the fence line between choosing the bus or gondola, perhaps the added incentives could sway the decision to the gondola side of the aisle.

Have a great day - the third is near! Chris McCandless, President CW MANAGEMENT CORPORATION

THE PROBLEM

- Little Cottonwood Canyon welcomes over 2 million visitors year-round
- 7,000 vehicles (annual average) travel Little Cottonwood Canyon per day.
- These vehicles produce 70 tons of carbon per day.
- Utah's population is set to double by 2050
- More in canyon cars/buses equals higher fire hazards

Picture left: AV control team shooting LCC north side from south side at Snowbird

- SR 210 is the most avalanche prone highway in North America
- 57% of the 9 miles of SR 210 is threatened by 64 avalanche paths
- 2800 residents and employees live and work every day in the canyon plus millions of visitors – closing the canyon is not an option.
- Army to eliminate the use of howitzers for avalanche control by as early as 2026. Wilderness AV areas will be very difficult to control creating more-extended road closures and canyon closures and delays.

THE UDOT PROCESS

Little Cottonwood Canyon LIMPACT STATEMENT S.R. 210 | Wasatch Blvd. to Alta

UDOT has identified two preferred alternatives as part of its Environmental Impact Statement:

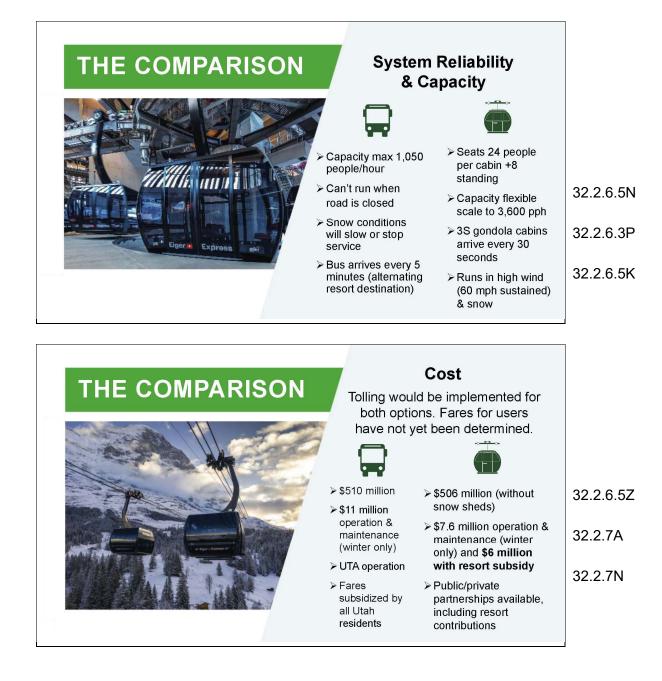
- 1. Road widening & enhanced bus service
- 2. Gondola from La Caille Base station

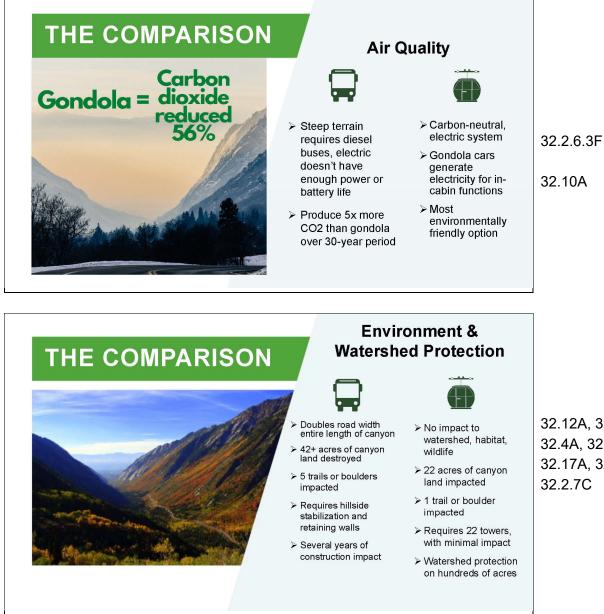
Public comment period is open:

June 25, 2021 - September 3, 2021

<section-header><section-header><section-header><section-header><section-header><image><image><text><text><image><text>

THE COMPARISON


Emergency Egress


Gondola is the ONLY OPTION that provides secondary route in/out of canyon in case of emergency and bad weather

- Over a 3-day period in February 2021, 2,000+ people were trapped in LCC with no emergency egress.
- 6 days between food deliveries

32.2.6.5H

32.12A, 32.12B, 32.4A, 32.4B 32.17A, 32.17B, 32.2.7C

LCC ROW EXPANSION

Expanded Road Rendering:

- · Rendering is the mile seven area.
- · Significant retaining walls and over-excavation
- Reduction of width to the pedestrian and bike lanes (cars will use the bus lanes to pass making bike travel hazardous)

station includes:

> Passenger drop off

> Bus right-off lanes

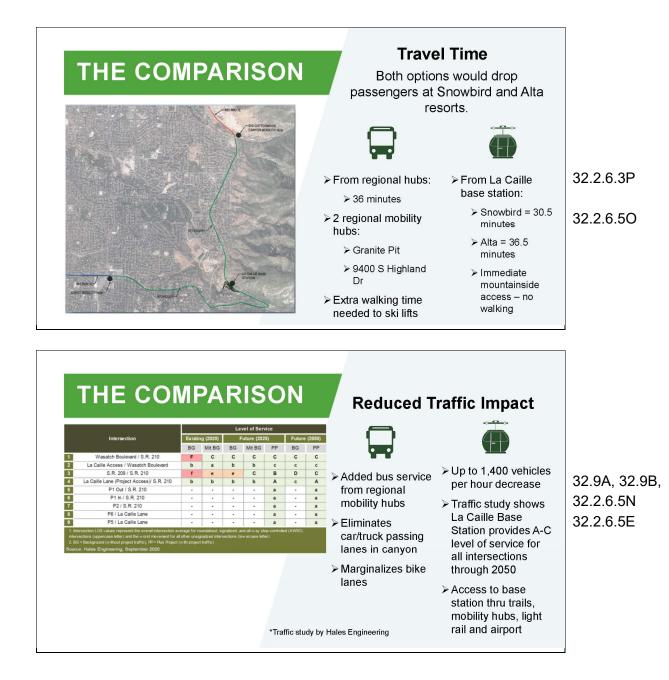
parking structure > Up to 1,800 parking stalls > Lockers & amenities

32.17A 32.17B

THE COMPARISON

CAILLE STATIC

Peds, Cars & Buses



≻2 regional mobility ≻ La Caille base hubs:

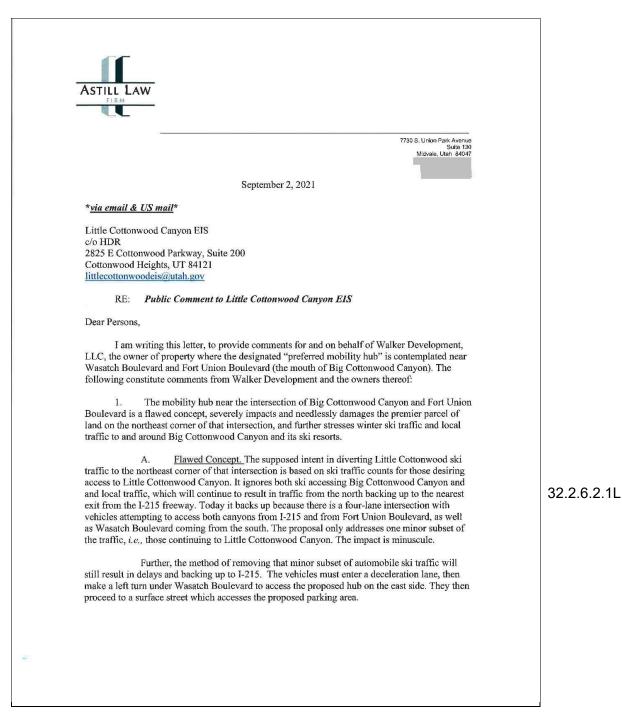
PEDESTRIAN

- > Granite Pit (1,500 parking stalls) 9400 S Highland Dr (1,000 parking stalls)
 - Pedestrian tunnel Below road grade

32.2.6.5J

THE DETAILS

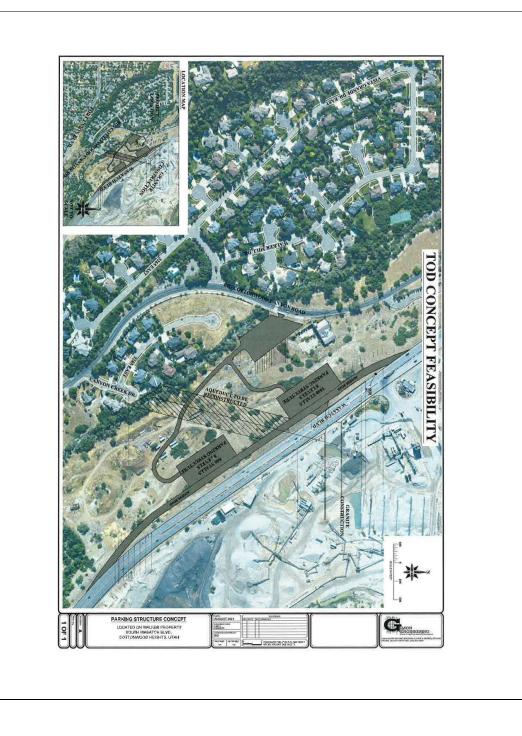
Private Support


- Public/private partnership opportunities
- Any option will be a state project just like other UDOT transportation projects
- Gondola is the only option that could have several revenue streams

32.2.7N

- Snowbird and Alta will be a large contributor, paying for season pass holders and employees just as they do now for UTA bus service
- Operating costs confined to canyon users vs. Bus to all County taxpayers
- If gondola goes forward, Mt. Superior and adjacent land will be placed in a permanent conservation easement

COMMENT #:	13311
DATE:	9/2/21 12:00 PM
SOURCE:	Mailed
NAME:	Dennis Astill

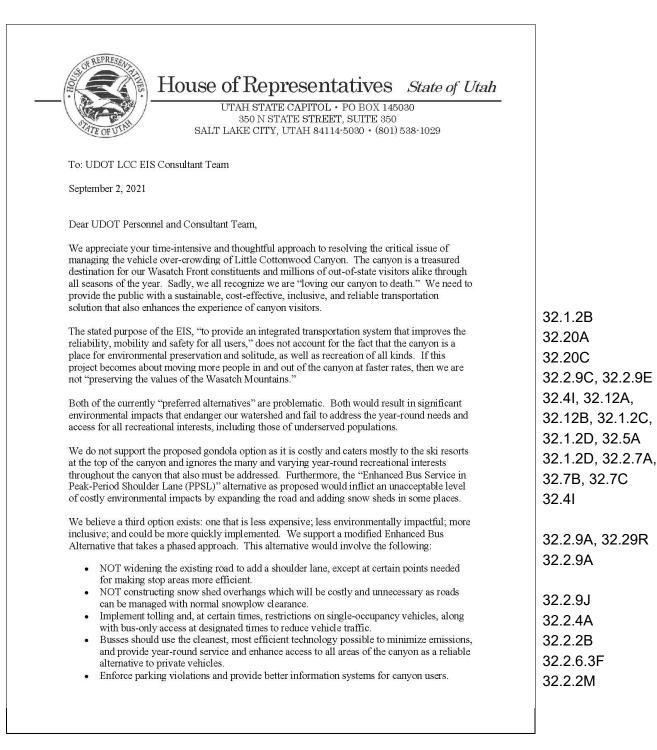


September 2, 2021 Page 2	
We fail to see how this removes traffic without backing traffic up, in fact, a prominent engineer who had studied the area extensively commented on this and was ignored. Alternative recommendations were made by the affected landowner and the local City Engineer and others to create a similar or larger structure on the west side of Wasatch Boulevard, which we believe would avoid much of the immediate traffic jams because of the immediate access to a parking structure without traveling through an intersection and along surface streets. We will provide engineering drawings with this comment to demonstrate this more direct approach.	32.2.6.2.1L 32.2.6.2.1D 32.2.2VVV
B. <u>Severe Land Impact and Damages.</u> The proposed land impacted by the mobility hub is one of the premier locations in the Salt Lake Valley, slated for multiuse commercial, retail and high density housing as shown on the city master plans. The opposite side (west of the proposed site) would impact virtually no one, would be much more economical and sightly for the residents and visitors. Damage to the land surrounding the proposed mobility hub would be severe. Further, drawing in more traffic, not less to the intersection and property ignores the reality of the anticipated property development itself. If UDOT is looking for a solution extending into the future, it is ignoring the short and long-term impacts that this property will have and ignoring impacts on Big Cottonwood Canyon.	32.4S 32.2.6.2L 32.20D
In fact, it is irresponsible on its face to ignore the traffic challenges at Big Cottonwood Canyon for the benefit of Little Cottonwood Canyon. To be blunt, it seems that a biased and one-sided view and one wonders why only one Canyon's problems are being addressed.	32.1.1A
C. <u>Cost Impact to UDOT</u> . Our own preliminary plans for the preferred alternative show that property development will add thousands of visits per day to Wasatch Boulevard and that property values will be in the neighborhood of \$1,000,000 or more per acre. The property is over 300 acres. The anticipated taking of approximately 23+ acres is not the end of the costs. It will take from the value of the entire parcel and development. While some may look at this as "just money", this is not the best alternative for taxpayers. For example, using similar design configurations, a county golf course at the 6200 S. off-ramp would cost less, impact no prime development land, and remove the traffic before it even reaches Wasatch Boulevard. This would benefit both canyons and cost UDOT and Utah taxpayers far less.	32.4S 32.2.6.2.1M
2. During public meetings, designers and planners came prepared to advocate for their position and refused to listen to any of the affected parties. It seems obvious that they saw a gravel pit (which is quickly winding down and is open for development) and decided they could do anything they want to that land. They openly and misguidedly thought somehow this would enhance the land. They obviously have no experience in the development world and they could not be more wrong.	32.2.6.2.1L
In summary, this project does not mitigate traffic concerns or provide long term solutions. It ignores the current massive problem at the entrance to Big Cottonwood Canyon and the impacts to land. It appears to have been sited solely to improving traffic flow to Little Cottonwood Canyon. As indicated, it will cost more for the State of Utah, solve few of the impending problems, and will not be a long-term viable solution for traffic flow.	32.2.6.2.1L 32.1.1A

September 2, 2021 Page 3

Sincerely ut ale Dennis M. Astill

DMA/ss cc: Douglas M. Shelby



COMMENT #:	13312
DATE:	9/2/21 12:22 PM
SOURCE:	Email
NAME:	Ross Chambless

Dear UDOT Personnel and Consultant Team,

Please accept this letter on behalf of these members of the Utah House Democratic Caucus addressing their concerns with both of the current transportation proposals for Little Cottonwood Canyon.

Thank you, Ross Chambless

This approach would allow us to proceed relatively quickly with an incremental plan that increases access and convenience for all recreational interests year-round in a manner that is fair, sustainable, and which preserves some of the solitude and environmental integrity of the place. It would also minimize costly and potentially destructive environmental impacts to the canyon and prioritizes the preservation of our critical watershed – the source of our public drinking water – which is in the best long-term interests of our state.	32.2.70 32.1.20 32.41 32.12A
We appreciate your consideration of this modified alternative,	32.12B
Signed, Members of the Utah House Democratic Caucus State Representative Ioel Briscoe State Representative Ioel Briscoe State Representative Jennifer Dailey-Provost State Representative Suzame Harrison State Representative Suzame Harrison State Representative Carol Spackman Moss State Representative Stephanie Pitcher State Representative Angela Romero State Representative Elizabeth Weight	

COMMENT #:	13313
DATE:	9/2/21 2:05 PM
SOURCE:	Email
NAME:	Dave Fields

Josh and Vince, Please find Snowbird's feedback on the LCC DEIS. Thank you for all of your hard work on this project. Dave

August 2, 2021	ski and summer resort	
Little Cottonwood Canyon EIS C/O HDR 2825 E. Cottonwood Parkway, Ste. 200 Cottonwood Heights, UT 84121		
Dear Little Cottonwood Canyon EIS Team,		
Please accept the following comments regarding the Utah Dep Cottonwood Canyon EIS. Snowbird's owners, management, an time and resources UDOT has put into this process and look fo Cottonwood Canyon that is safer, more efficient, and reliable.	d employees appreciate the significant	
After decades of transportation study and analysis in Little Cot gondola with La Caille base station option. Snowbird's founder the late 60's and early 70's on a canyon aerial transportation s steep, two-lane highway with 64 avalanche paths was not suita	s worked with architects and engineers in ystem because it was obvious that a	32.2.9D
Tolling		
For many years, Snowbird has voiced its support for tolling as a transportation solution, but, as I have frequently stated, I do no solution. We see tolling as one piece of a larger transportation get out of their vehicles and into a SR 210 mass transit solution	ot believe tolling is an independent solution as it motivates canyon visitors to	32.2.4A, 32.5A, 32.2.2Y, 32.1.1A
Snowbird does not support tolling prior to the implementation below Snowbird Entry 1 is simply a "skier tax." Other canyons, beginning at the mouth. Hence, tolling at the base of Little Cott and disbursed recreationalists throughout the canyon. When to recreation in Little and Big Cottonwood canyons alike.	such as Millcreek, toll all visitors tonwood Canyon would be a fee for skiers	32.20D
Roadside parking		
Both UDOT and the US Forest Service have identified a commo Snowbird, the roadside parking accounts for a significant amou activities. Any actions taken to reduce roadside parking cannot effective canyon transit system without causing significant har access to public lands for canyon visitors.	int of our parking for summer and winter precede the implementation of an	32.2.9H
Avalanche mitigation		
U.S. military artillery has been the backbone of avalanche cont However, its future is uncertain as the supply of munitions and around the country. Many of the avalanche starting zones in Li	liability threaten artillery programs	
	SNOWBIRD RESORT LLC 9365 South Snowbird Center Drive Snowbird, Utah 84092-9000 (801) 933-2222 snowbird.com	

areas, which precludes the installation of remote avalanche control devices (RACs). Without a change in federal legislation allowing for the installation of RACs in wilderness, a suspension or cessation of artillery-based avalanche control would create a hazardous situation in Little Cottonwood Canyon. Other forms of avalanche control like helicopter bombing is highly weather dependent. Ski patrol avalanche control routes with hand charges are not feasible due to ridgeline terrain and mid-slope starting zones. For example, if the artillery program is no longer in use and UDOT has selected an expanded road and bus option, this transportation option will not provide an emergency ingress/egress during storms. Little Cottonwood Canyon could remain closed for days at a time until the weather allows for helicopter bombing. A gondola can operate in most weather conditions including when the road is not available due to an unacceptable avalanche hazard index.

Emergency egress

Over the past 50 years of operation in the canyon, we have seen annual snowfall decline significantly, yet weather events are becoming more volatile. In the past two winters, we experienced extended road closures due to avalanche slides – one of two days and another of three days. Heavy rainfall also caused a debris slide covering the road for multiple days and, when finally open, continued to restrict movement in and out of the canyon for days. We are experiencing changes in the canyon climate that can threaten the health and safety of canyon residents and guests. During the last three-day road closure, we had multiple medical events including one that required snowcat evacuation only accomplished after a six-hour delay due to extreme avalanche conditions. A gondola would provide emergency egress in extreme weather situations at all hours of the day and night. Expanded bus service does not improve our ability to address emergency services.

Avalanche hazard index

The avalanche hazard index includes many factors such as the number of people exposed to a potential slide. Adding two lanes to SR 210 and filling that lane with buses only compounds the avalanche hazard index. A gondola reduces vehicular traffic, thus reducing the avalanche hazard index with enhanced canyon access.

Scalability

The purpose and need defined for the UDOT LCC EIS is narrow. Yet, the Wasatch Front population is forecasted to double by 2050. This growth will multiply today's traffic, parking and access challenges. A significant capital investment by UDOT will address growth, and if done well, can evolve over time. The ability to expand bus is not efficient. The Utah Transit Authority has stated that bus headway is limited to every 5 minutes. A busy winter weekend day in the canyon will have 7,000 vehicles per day traveling up and down Little Cottonwood Canyon. If one day our goal is to take half of the vehicles off the highway, UTA would need to purchase 126 buses (up and down) with an occupancy of 50 people per bus. These 126 buses would be traveling 10.5 hours up and 10.5 hours down given the 5-minute headway limitation.

SNOWBIRD RESORT LLC 9385 South Snowbird Center Drive Snowbird, Utah 84092-9000 (801) 933-2222 snowbird.com 32.7A, 32.2.6.5H, 32.2.2VV, 32.2.6.3P

32.2.6.5K

32.2.6.5H

32.1.2D 32.7A

32.2.6.3N

Conversely, a gondola increases capacity by simply adding cabins. Skiers arrive in the morning and depart in the afternoon; no more buses, no more congestion, no more pollution. Gondola provides a sensible solution for visitors' arrival and departure pattern.

Land Preservation

Snowbird and its stakeholders are committed to a generational solution; one that addresses the unique conditions of Little Cottonwood Canyon. With a gondola implementation, Snowbird will place approximately 1,100 acres of its private land originally designated for the Mtn. Accord and Central Wasatch Commission land exchange in a conservation easement. Providing perennial protection to these lands, which include Mt. Superior, is a win for the community, backcountry skiers, hikers, and all who appreciate the majesty of this iconic peak.

Base Station

Snowbird has purchased approximately 5 acres in preparation for the location of the La Caille gondola base station. Snowbird is holding this land to be made available upon the conclusion of the UDOT LCC EIS process. Either through sale or donation, Snowbird is committed to providing a thoughtful, long-term canyon transportation solution. If the gondola is not selected for transportation, Snowbird will pursue other uses of the land.

Dispersed recreation

The majority of dispersed recreation in the upper half of Little Cottonwood Canyon occurs in three primary areas – White Pine, Grizzly Gulch and Albion Basin. Grizzly Gulch and Albion Basin will be easily accessible from the proposed location of the Alta gondola station. Snowbird can provide summer and winter access from the Snowbird gondola station to the White Pine Trailhead. A transit solution to bring winter backcountry users back to the station at Snowbird will need to be determined. Snowbird is committed to exploring a transportation solution for White Pine trailhead users.

I am mindful of the many hours you have invested into providing a process that is thorough, transparent and inclusive. I commend you for how you have navigated a very difficult, yet important task and process.

Sincerely,

till

Dave Fields President/GM Snowbird

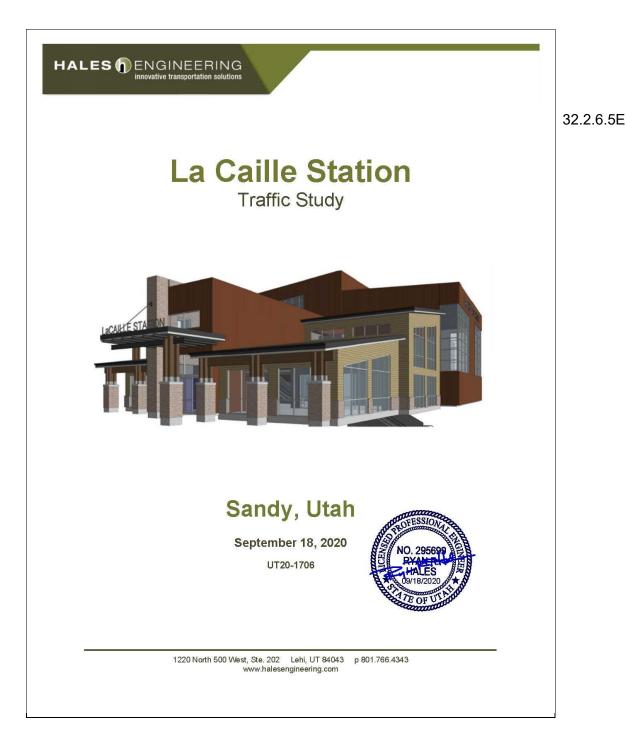
SNOWBIRD RESORT LLC 9385 South Snowbird Center Drive Snowbird, Utah 84092-9000 (801) 933-2222 snowbird com 32.2.6.5A 32.2.6.5N

32.29F

32.2.7A

32.2.6.5AA

COMMENT #:	13314
DATE:	9/2/21 8:22 PM
SOURCE:	Email
NAME:	Chris McCandless


Josh,

The end is near!

As I was writing my last thoughts to send you guys, I was wondering if we ever sent you the Hales Engineering Traffic Impact Study as it relates to the LaCaille Base Station. With all the assumptions by folks that I am certain are making traffic related statements, we want the TIS we prepared to be part of the public comment to counter some of the inaccurate non-science based statements. To that end, please accept the LaCaille Base Station Traffic Impact Study and include it as a comment/information that should be used in considering the two alternatives as stated in the DEIS.

Thanks again for all you and the team have done.

Chris McCandless, President CW MANAGEMENT CORPORATION

HALES DENGINEERING

Sandy - La Caille Station Traffic Impact Study

EXECUTIVE SUMMARY

This study addresses the traffic impacts associated with the proposed La Caille development located in Sandy, Utah. The La Caille project is located along S.R. 210, to the south of Granite Bench Lane.

The purpose of this traffic impact study is to analyze traffic operations at key intersections for existing (2020), future (2025), and future (2050) conditions with and without the proposed project and to recommend mitigation measures as needed. The morning peak hour level of service (LOS) results are shown in Table ES-1. Recommended storage lengths are shown in Table ES-2.

Table ES-1: Morning Peak Hour Level of Service Results

				Le	vel of Serv	ice		
Intersec	tion	Existing (2020)		Future (2025)		Future (2050)		
		BG	Mit BG	BG	Mit BG	PP	BG	PP
Wasatch Bould	evard / S.R. 210	F	С	С	С	С	С	С
La Caille Access /	Wasatch Boulevard	b	a	b	b	C	C	C
S.R. 209	/ S.R. 210	f	е	е	С	в	D	С
La Caille Lane (Proje	ct Access)/ S.R. 210	b	b	b	b	A	C	A
P1 Out /	S.R. 210	121	191			a	12	a
P1 In /:	S.R. 210	-	-	-		a	-	a
P2 / S	.R. 210	1270				a	12	a
P6 / La C	aille Lane		1	8		a		a
P5 / La C	aille Lane	-	-	-	-	a		a

Source: Hales Engineering, September 2020

Table ES-2: Recommended Storage Lengths

Project Condit	ions	
 The develop The project is morning peal The project is 	ment will consist of a gondola, a hotel, residen s anticipated to generate approximately 3,902 k hour, and 605 trips in the evening peak hour	weekend daily trips, including 504 trips in the r in 2025 weekend daily trips, including 646 trips in the
2020	Background	
Assumptions	 30th busiest peak hour volume assumed p Statement (EIS) 	per Little Cottonwood Environmental Impact
Findings	• Poor LOS at Wasatch Blvd / S.R. 210 and	I S.R. 209 / S.R. 210
Mitigations	and carry lane several hundred feet befor	n per the imbalanced lane alternative in the EIS
2025	Background	Plus Project
Assumptions	• 1.2% growth rate per EIS	 Trips to gondola removed from S.R. 209 / S.R. 210 intersection and rerouted accordingly 5-minute bus headway
Findings	• Poor LOS at S.R. 209 / S.R. 210	Acceptable LOS
Mitigations	• S.R. 209 / S.R. 210: Signalize	• None
2050	Background	Plus Project
Assumptions	Wasatch Boulevard: Widen to 5 lanes per WFRC RTP through study area Wasatch Boulevard / S.R. 210: Convert to conventional intersection and install dual left-turn lanes on the eastbound approach and a left-turn lane on the northbound approach	• None
Findings	Acceptable LOS	Acceptable LOS
Mitigations	See EIS	• None
Gondola Adva	ntages	
	onsistency and reliability of travel time	
 The ability to Increased sa 	operate during avalanche clearing/control fety	
	ay during periods of S.R. 210 closure	
	ive than preferred bus alternative in capital an	d O&M costs

HALES () ENGINEERING

Sandy - La Caille Station Traffic Impact Study

TABLE OF CONTENTS

TAI	BLE OF CONTENTS	iii
LIS	T OF TABLES	v
LIS	T OF FIGURES	v
	INTRODUCTION	
۹.	Purpose	1
3.	Scope	
С.	Analysis Methodology	
Э.	Level of Service Standards	2
I.	EXISTING (2020) BACKGROUND CONDITIONS	4
۹.	Purpose	4
В.	Roadway System	
С.	Traffic Volumes	
D.	Level of Service Analysis	
Ε.	Queuing Analysis	
F.	Mitigation Measures	7
II.	FUTURE (2025) BACKGROUND CONDITIONS	9
Α.	Purpose	
В.	Roadway Network	
С.	Traffic Volumes	
D.	Level of Service Analysis	
Ε.	Queuing Analysis	
Ξ.	Mitigation Measures	
IV.	PROJECT CONDITIONS	
۹.	Purpose	
В.	Project Description	
<u>C</u> .	Trip Generation	
<u>)</u> .	Trip Distribution and Assignment	
E. F.	Access Auxiliary Lane Requirements	
v.	FUTURE (2025) PLUS PROJECT CONDITIONS	
Α.	Purpose	
З. С.	Roadway Network Traffic Volumes	
Э. Э.	Level of Service Analysis	
Б. Е.	Queuing Analysis	
F.	Mitigation Measures	
VI.	FUTURE (2050) BACKGROUND CONDITIONS	
۹. Þ	Purpose	
В. С.	Roadway Network Traffic Volumes	
D.	Level of Service Analysis	
		<i></i>
		Ш

HALES DENGINEERING

Sandy - La Caille Station Traffic Impact Study

	Queuing Analysis Mitigation Measures	
VII.	FUTURE (2050) PLUS PROJECT CONDITIONS	
A.	Purpose	
В.	Traffic Volumes	
C.	Level of Service Analysis	
D.	Queuing Analysis	
E. F.	Mitigation Measures	
	Recommended Storage Lengths	
A.	Purpose	
п. В.	Enhanced Bus Comparison	
С.	Gondola Advantages	
D.	La Caille Base Station Benefits	. 30

Sandy - La Caille Station Traffic Impact Study

۷

LIST OF TABLES

Table 1: Level of Service Description	3
Table 2: Existing (2020) Background Morning Peak Hour LOS	7
Table 3: Mitigated Existing (2020) Background Morning Peak Hour LOS	8
Table 4: Future (2025) Background Morning Peak Hour LOS	11
Table 5: Mitigated Future (2025) Background Morning Peak Hour LOS	11
Table 6: Project Land Uses	12
Table 7: Site Trip Generation	13
Table 8: Trip Distribution	14
Table 9: Future (2025) Plus Project Morning Peak Hour LOS	20
Table 10: Future (2050) Background Morning Peak Hour LOS	
Table 11: Future (2050) Plus Project Morning Peak Hour LOS	27
Table 12: Recommended Storage Lengths	

LIST OF FIGURES

Figure 1: Vicinity map showing the project location in Sandy, Utah	1
Figure 2: Existing (2020) background morning peak hour traffic volumes	6
Figure 3: Future (2025) background morning peak hour volumes	10
Figure 4: Trip assignment (2025) for the morning peak hour	15
Figure 5: Trip assignment (2050) for the morning peak hour	16
Figure 6: Future (2025) plus project morning peak hour volumes	21
Figure 7: Future (2050) background morning peak hour volumes	23
Figure 8: Future (2050) plus project morning peak hour volumes	26

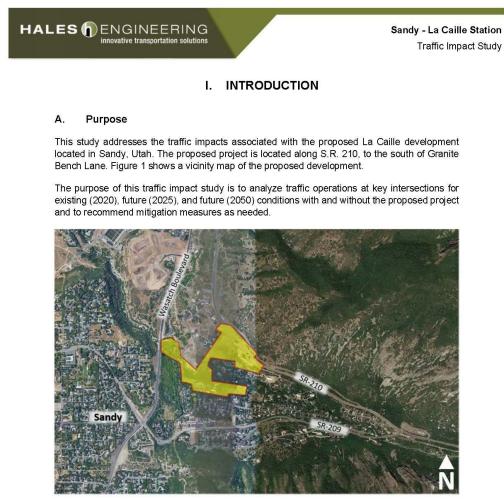


Figure 1: Vicinity map showing the project location in Sandy, Utah

B. Scope

The study area was defined based on conversations with the development team. This study was scoped to evaluate the traffic operational performance impacts of the project on the following intersections:

- Wasatch Boulevard / S.R. 210
- La Caille Access / Wasatch Boulevard

1

- S.R. 209 / S.R. 210
- Project Access / S.R. 210

C. Analysis Methodology

Level of service (LOS) is a term that describes the operating performance of an intersection or roadway, LOS is measured quantitatively and reported on a scale from A to F, with A representing the best performance and F the worst. Table 1 provides a brief description of each LOS letter designation and an accompanying average delay per vehicle for both signalized and unsignalized intersections.

The *Highway Capacity Manual* (HCM), 6th Edition, 2016 methodology was used in this study to remain consistent with "state-of-the-practice" professional standards. This methodology has different quantitative evaluations for signalized and unsignalized intersections. For signalized, roundabout, and all-way stop-controlled (AWSC) intersections, the LOS is provided for the overall intersection (weighted average of all approach delays). For all other unsignalized intersections, LOS is reported based on the worst movement.

Using Synchro/SimTraffic software, which follow the HCM methodology, the peak hour LOS was computed for each study intersection. Multiple runs of SimTraffic were used to provide a statistical evaluation of the interaction between the intersections. The detailed LOS reports are provided in Appendix B. Hales Engineering also calculated the 95th percentile queue lengths for the study intersections using SimTraffic. The detailed queue length reports are provided in Appendix D.

D. Level of Service Standards

For the purposes of this study, a minimum acceptable intersection performance for each of the study intersections was set at LOS D. If levels of service E or F conditions exist, an explanation and/or mitigation measures will be presented. A LOS D threshold is consistent with "state-of-the-practice" traffic engineering principles for urbanized areas.

	Description of			Average Delay (seconds/vehicle)		
	LOS	Traffic Cond				
A	~	Free Flow Insignificant		≤ 10		
в	<u>.</u>	Stable Opera Minimum De	tions / elays > 10 to	20 > 10 to 15		
c	•	Stable Opera Acceptable D		35 > 15 to 25		
D		Approach Unstable Fik Tolerable De	ows / > 35 to	55 > 25 to 35		
E		Unstable Ope / Significant [rations > 55 to Delays	80 > 35 to 50		
F		Forced Flo Unpredictable / Excessive [Flows > 80	> 50		
Source: Hales Engiı Methodology (Trans	neering Descriptions portation Research	, based on the <i>Highway</i> Board)	Capacity Manual (H	CM), 6 th Edition, 201		

Sandy - La Caille Station Traffic Impact Study

II. EXISTING (2020) BACKGROUND CONDITIONS

A. Purpose

The purpose of the background analysis is to study the intersections and roadways during the peak travel periods of the day with background traffic and geometric conditions. Through this analysis, background traffic operational deficiencies can be identified, and potential mitigation measures recommended. This analysis provides a baseline condition that may be compared to the build conditions to identify the impacts of the development.

B. Roadway System

The primary roadways that will provide access to the project site are described below:

<u>S.R. 210</u> – is a state-maintained roadway (classified by UDOT access management standards as a "System Priority – Urban Importance" facility, or access category 3 roadway). S.R. 210 has one travel lane in each direction with left-tum lanes at intersections. As identified and controlled by UDOT, a "System Priority – Urban Importance" access classification identifies minimum signalized intersection spacing of one-half mile (2,640 feet) and other streets and driveways are typically not allowed. The posted speed limit on S.R. 210 is 50 mph.

<u>Wasatch Boulevard</u> – is a city-maintained roadway which is classified by the Sandy City Master Transportation Plan (July 2009) as a "major collector." The roadway has one travel lane in each direction separated by a center two-way left-turn lane (TWLTL) north of the existing La Caille access. To the south of the access, there are two southbound lanes and one northbound lane without a TWLTL. The posted speed limit is 35 mph in the study area.

As of this writing, a project is under construction at the mouth of Little Cottonwood Canyon on the east side of the S.R. 209 / S.R. 210 intersection. The acceleration lane for the northbound approach is being extended to allow for more merging time. This project was assumed to be completed for the existing (2020) background scenario.

C. Traffic Volumes

Weekday morning (7:00 to 9:00 a.m.) and evening (4:00 to 6:00 p.m.) peak period traffic counts were performed at the following intersections:

- Wasatch Boulevard / S.R. 210
- La Caille Access / Wasatch Boulevard
- S.R. 209 / S.R. 210
- Project Access / S.R. 210

The counts were performed on Thursday, April 15, 2020. The morning peak hour was determined to be between 8:00 and 9:00 a.m., and the evening peak hour was determined to be between 4:45 and 5:45 p.m. While the evening peak hour volumes were higher than the morning peak hour

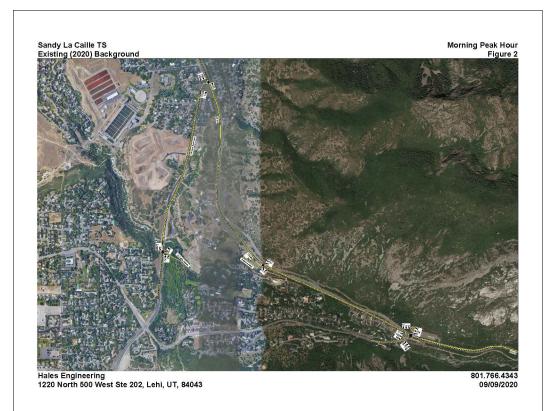
4

Sandy - La Caille Station Traffic Impact Study

volumes, the morning peak hour volumes were used for the purposes of this analysis as queueing is known to be worse during peak ski season in winter months.

Hales Engineering made seasonal adjustments to the observed traffic volumes. According to the Little Cottonwood Environmental Impact Statement, UDOT uses the 30th busiest hour for its design, in which 1,061 vehicles were counted going into Little Cottonwood Canyon on S.R. 210 in the eastbound direction in 2017. The 30th highest hour was on a weekend from 10:00 to 11:00 a.m., which was studied in the analyses. For the existing (2020) background analysis, these volumes were increased at the established annual growth rate of 1.2% to 1,100 eastbound vehicles during the morning peak hour. The counted volumes were increased by 345% accordingly on the eastbound left and thru movements and the northbound right movement at the S.R. 209 / S.R. 210 intersection. Southbound thru movements were also increased to match at the Wasatch Boulevard / S.R. 210 intersection.

The remaining movements were also adjusted according to monthly traffic volume data obtained from a nearby UDOT automatic traffic recorder (ATR) on S.R. 210 (ATR #317). In 2017, traffic volumes on an August weekday were equal to approximately 61% of February weekend traffic volumes. The remaining observed traffic volumes were adjusted accordingly to determine turning movement counts at the study intersections.


Figure 2 shows the existing morning peak hour volumes as well as intersection geometry at the study intersections.

D. Level of Service Analysis

Hales Engineering determined that the Wasatch Boulevard / S.R. 210 and S.R. 209 / S.R. 210 intersections are currently operating at poor levels of service during the morning peak hour, as shown in Table 2.

E. Queuing Analysis

Hales Engineering calculated the 95th percentile queue lengths for each of the study intersections. Some significant queueing was observed during the morning peak hour at the Wasatch Boulevard / S.R. 210 intersection (0.4 miles, southbound approach and 0.3 miles, eastbound approach) and at the S.R. 209 / S.R. 210 intersection (0.3 miles, northeast-bound approach).

Sandy - La Caille Station Traffic Impact Study

Table 2: Existing (2020) Background Morning Peak Hour LOS

Intersection	Level of Service			
Description	Description Control		Aver. Delay (Sec. / Veh.)	LOS
Wasatch Boulevard / S.R. 210	Signal	-	>80	F
La Caille Access / Wasatch Boulevard	WB Stop	WBL	11.0	b
S.R. 209 / S.R. 210	NE/SW Stop	NEL	>50	f
Project Access / S.R. 210	WB Stop	WBL	14.4	b

Source: Hales Engineering, September 2020

F. Mitigation Measures

It is recommended that Wasatch Boulevard be widened to accommodate a second southbound thru lane according to the Imbalanced-Lane alternative in the Little Cottonwood Environmental Impact Statement. It is recommended that the second thru lane be carried through the Wasatch Boulevard / S.R. 210 intersection several hundred feet before it merges. It is anticipated that it would extend all the way to the P2 entrance as a trap right-turn lane in plus project conditions.

While the S.R. 209 / S.R. 210 intersection does not warrant a signal, mitigations can be made to improve its operation. It is recommended that that a right-turn pocket be installed with 200 feet of storage. It is anticipated that this will reduce the northeast-bound 95th percentile queue length to 200 feet. With the proposed improvements, the Wasatch Boulevard / S.R. 210 intersection is anticipated to operate at LOS C, as shown in Table 3.

Sandy - La Caille Station Traffic Impact Study

Table 3: Mitigated Existing (2020) Background Morning Peak Hour LOS

Intersection	Level of Service				
Description Conf		Movement ¹	Aver. Delay (Sec. / Veh.)	LOS	
Wasatch Boulevard / S.R. 210	Signal	-	22.4	С	
La Caille Access / Wasatch Boulevard	WB Stop	WBL	8.8	а	
S.R. 209 / S.R. 210	NE/SW Stop	NEL	49.5	е	
Project Access / S.R. 210	WB Stop	NEL	11.4	b	

Source: Hales Engineering, September 2020

III. FUTURE (2025) BACKGROUND CONDITIONS

A. Purpose

The purpose of the future (2025) background analysis is to study the intersections and roadways during the peak travel periods of the day for future background traffic and geometric conditions. Through this analysis, future background traffic operational deficiencies can be identified, and potential mitigation measures recommended.

B. Roadway Network

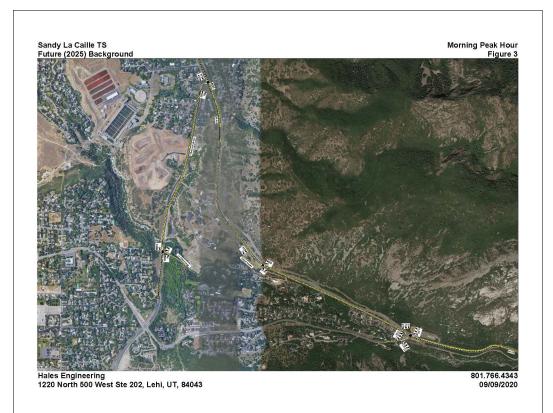
According to the Wasatch Front Regional Council (WFRC) Regional Transportation Plan, there are no projects planned before 2025 in the study area. Therefore, no changes were made to the roadway network for the future (2025) analysis.

C. Traffic Volumes

Hales Engineering utilized the 1.2% annual growth rate established in the Little Cottonwood Environmental Impact Statement to project the future turn volumes at the study intersections. Future (2025) morning peak hour turning movement volumes are shown in Figure 3.

D. Level of Service Analysis

Hales Engineering determined that the S.R. 209 / S.R. 210 intersection is anticipated to operate at a poor LOS during the morning peak hour in future (2025) background conditions, as shown in Table 4. These results serve as a baseline condition for the impact analysis of the proposed development for future (2025) conditions.


E. Queuing Analysis

Hales Engineering calculated the 95th percentile queue lengths for each of the study intersections. Some significant queuing is anticipated during the morning peak hour at the Wasatch Boulevard / S.R. 210 intersection, with queue lengths of 330 feet on the southbound approach and 750 feet on the eastbound approach.

F. Mitigation Measures

According to the Utah MUTCD, the anticipated future (2025) background volumes at the S.R. 209 / S.R. 210 intersection warrant a signal. It is therefore recommended that the intersection be signalized with permissive/protected left-turn phasing on the westbound approach.

With the proposed improvement, all intersections are anticipated to operate at an acceptable LOS, as shown in Table 5.

Sandy - La Caille Station Traffic Impact Study

Table 4: Future (2025) Background Morning Peak Hour LOS

Intersection	Level of Service			
Description	Control	Movement ¹	Aver. Delay (Sec. / Veh.)	LOS ²
Wasatch Boulevard / S.R. 210	Signal	-	28.7	с
La Caille Access / Wasatch Boulevard	WB Stop	WBL	13.6	b
S.R. 209 / S.R. 210	NE/SW Stop	NEL	44.0	е
Project Access / S.R. 210	W/B Stop	NEL	13.4	b

2 Uppercase LOS used for signalized, roundabout, and AWSC intersections. Lowercase LOS Source: Hales Engineering, September 2020

Table 5: Mitigated Future (2	2025) Background N	Morning Peak Hour LOS
------------------------------	--------------------	-----------------------

Intersection		Level of Service				
Description	Control	Movement ¹	Aver. Delay (Sec. / Veh.)	LOS		
Wasatch Boulevard / S.R. 210	Signal	-	27.5	с		
La Caille Access / Wasatch Boulevard	WB Stop	WBL	13.2	b		
S.R. 209 / S.R. 210	Signal	-	23.2	с		
Project Access / S.R. 210	WB Stop	NEL	11.2	b		

Movement indicated for unsignalized intersections where delay and LOS represents worst movement. SBL = Southbound left movement, etc Uppercase LOS used for signalized, roundabout, and AWSC intersections. Lowercase LOS used for all other unsignalized intersections.

Source: Hales Engineering, September 2020

IV. PROJECT CONDITIONS

A. Purpose

The project conditions discussion explains the type and intensity of development. This provides the basis for trip generation, distribution, and assignment of project trips to the surrounding study intersections defined in Chapter I.

B. Project Description

The proposed La Caille project is located along S.R. 210, to the south of Granite Bench Lane. The development will consist of a gondola, residential single-family units, a hotel, and a restaurant. A concept plan for the proposed development is provided in Appendix C. The proposed land use for the development has been identified in Table 6.

10000 TO 100	100 F 10	212 104	23 Q2	27	12	0.000
Table	6: F	Proi	iect	Lan	d	Uses

Land Use	Intensity
Single-family detached housing	50 Units
Hotel	75 Rooms
Restaurant	15,000 sq. ft.
Gondola	1,888 Parking Stalls

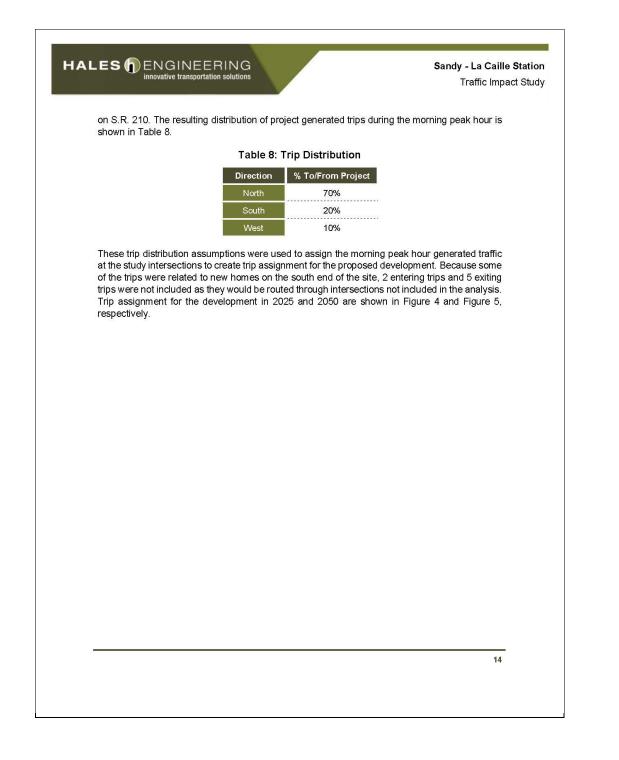
C. Trip Generation

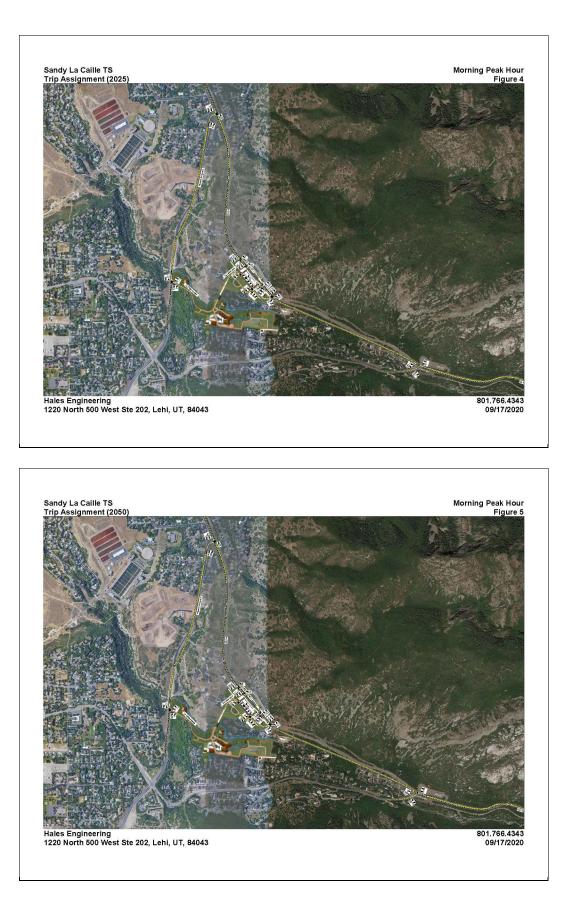
Trip generation for the site was calculated using trip generation rates published in the Institute of Transportation Engineers (ITE), *Trip Generation*, 10th Edition, 2017. Trip generation for the proposed project site, not including the gondola, is included in Table 7.

Gondola trip generation was based on numbers displayed in the EIS and verified by data collection and calculated rates from other gondolas. UDOT projects a 2050 hourly ridership of 1,050 people per hour and 341 vehicles during the morning peak hour that would go up the canyon. It was assumed that 34 vehicles would exit the gondola site based on data from other gondolas, which accounts for ride hailing services, taxis, and any exiting employees.

Additionally, because the parking lot at the mouth of the canyon would be removed if the La Caille station were to be implemented, the trips into the parking lot were routed into the gondola station as well as the gondola will have additional capacity. In the future (2050) plus project scenario, an additional 165 trips were routed into the development.

Bus data were copied from the EIS as well, which assumes a 5-minute headway. This translates to 12 buses per hour in either direction.


			it 25 ver	nicles \	vould	exit the		umed that luring the
	Table	7: Site Trip	Genera	ation				
		Trip Generat	ion					
		Sandy - La Cail	lle TIS					
Weekday Daily	# d r Units	Unit Type	Trip	% Entering	% Exiting	Trips	Trips Exiting	Total Daily
Land Use ¹	42	Dwelling Units	Generation 470	50%	50%	Entering 235	235	Trips 470
Single-Family Detached Housing (210) Quality Restuaruant (931)	15	1,000 Sq. Ft. GFA	1258	50%	50%	230	235 629	1,258
Hotel (310)	75	Rooms	420	50%	50%	210	210	420
Total			2,148	10110455		1,074	1,074	2,148
Morning Peak Hour Land Use ¹	# of Units	Unit Type	Trip Generation	% Entering	% Exiting	Trips Entering	Trips Exiting	Total AM Trips
Single-Family Detached Housing (210)	42	Dwelling Units	36	25%	75%	9	27	36
Quality Restuaruant (931)	15	1,000 Sq. Ft. GFA	12	50%	50%	6	6	12
Hotel (310)	75	Rooms	34	59%	41%	20	14	34
Total			82			35	47	82
Evening Peak Hour Land Use ¹	# of Units		Trip Generation	% Entering	% Exiting	Trips Entering	Trips Exiting	Total PM Trips
Single-Family Detached Housing (210)	42	Dwelling Units	46	63%	37%	29	17	46
Quality Restuaruant (931)	15	1,000 Sq. Ft. GFA	118	67%	33%	79	39	118
Hotel (310)	75	Rooms	32	51%	49%	16	16	32
Total			196			124	72	196
1. Land Use Code from the Institute of Transportation Engi	ineers()TE) <i>Tria</i>	. Generation ,10th Edition,20	1000/201 1	1		124		100
SOURCE: Hales Engineering, August 2020								
	ineers() (c) <u>200</u>	Iseneration , roin e atton, zu						


•	Daily Trips:	4,463
•	Moming Peak Hour Trips:	646
٠	Evening Peak Hour Trips:	743

D. **Trip Distribution and Assignment**

Project traffic is assigned to the roadway network based on the type of trip and the proximity of project access points to major streets, high population densities, and regional trip attractions. Existing travel patterns observed during data collection also provide helpful guidance to establishing these distribution percentages, especially near the site. Trip distribution was also based on the fact that the primary access to the gondola parking structure is to and from the north

13

E. Access

The proposed access for the site will be gained at the following locations (see also concept plan in Appendix C):

S.R. 210:

- La Caille Lane will be located approximately 3,800 feet northwest of the S.R. 209 / S.R. 210 intersection. It will access the project on the southwest side of S.R. 210. It is anticipated that the access will be signalized.
- Various other accesses will be located along S.R. 210, both to the first and second levels of parking. Bus pullouts are also planned along either side of S.R. 210, which were included in the analyses for the project. The primary accesses to the second level of the parking structure are on the northwest end of the site and include one-way tunnels on either side of S.R. 210. The access to the first level of the parking structure is located on the northwest end of the structure and is restricted to right-in movements only. A second access is located on the southeast end and is restricted to right-out movements only.

Wasatch Boulevard:

 The La Caille Access is an existing brick road on the east side of Wasatch Boulevard. The access is be stop-controlled.

Two other accesses to the parking structure are located on La Caille Lane and are currently planned to connect to the 5^{th} and 6^{th} levels of the structure.

F. Auxiliary Lane Requirements

Based on Administrative Rule R930-6, the following auxiliary lanes may be required for the proposed accesses onto S.R. 210 (UDOT Access Category 3 roadway):

Left-turn Deceleration Lane:

• Required when the projected peak hour left-turn ingress volume is greater than 5 vph. As shown in Figure 5, it is anticipated that this volume will be met during the morning peak hour at the La Caille Lane / S.R. 210 intersection. Therefore, a left-turn lane may be required at this location.

Right-turn Deceleration Lane:

 Required when the projected peak hour right-turn ingress volume is greater than 10 vph. As shown in Figure 5, it is anticipated that this peak hour volume will be met during the morning peak hour at the accesses on S.R. 210. Therefore, right-turn deceleration lanes may be required at these locations. The additional lane on eastbound S.R. 210 would fill this requirement at the La Caille Lane / S.R. 210 intersection.

V. FUTURE (2025) PLUS PROJECT CONDITIONS

A. Purpose

The purpose of the future (2025) plus project analysis is to study the intersections and roadways during the peak travel periods of the day for future background traffic and geometric conditions plus the net trips generated by the proposed development. This scenario provides valuable insight into the potential impacts of the proposed project on future background traffic conditions.

B. Roadway Network

In the current plans, the La Caille Lane / S.R. 210 intersection is drawn as a High-T intersection. However, because there are so many merging/diverging points nearby, from a safety standpoint, it is recommended that it be constructed as a conventional intersection. For this reason, it was analyzed as such.

While the anticipated morning peak hour volumes at the La Caille Lane / S.R. 210 intersection for future (2025) background conditions do not warrant signalization, it is anticipated that evening peak hour volumes will as vehicles exit the parking structure and return to S.R. 210. This intersection was analyzed with a traffic signal.

C. Traffic Volumes

Hales Engineering added the project trips discussed in Chapter III to the future (2025) background traffic volumes to predict turning movement volumes for future (2025) plus project conditions. Trips to the gondola were removed from the S.R. 209 / S.R. 210 intersection and rerouted accordingly. Future (2025) plus project morning peak hour turning movement volumes are shown in Figure 6.

D. Level of Service Analysis

Hales Engineering determined that all intersections are anticipated to operate at acceptable levels of service during the morning peak hour in future (2025) plus project conditions, as shown in Table 9. It is anticipated that, to some extent, the evenly spaced arrival of gondolas to the station will meter traffic arrival at the project site. Any improvement in LOS is likely due to the gondola diverting trips to and from Little Cottonwood Canyon.

E. Queuing Analysis

Hales Engineering calculated the 95th percentile queue lengths for each of the study intersections. Some significant queuing is anticipated during the morning peak hour at the Wasatch Boulevard / S.R. 210 intersection (300 feet, southbound approach and 660 feet, eastbound approach).

Sandy - La Caille Station Traffic Impact Study

F. Mitigation Measures

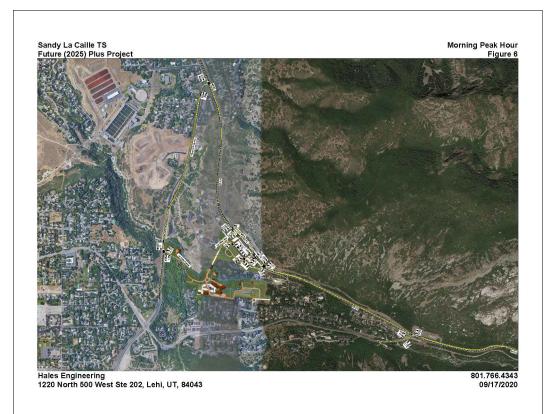

No mitigation measures are recommended.

Table 9: Future (2025) Plus Project Morning Peak Hour LOS

Intersection		Level of Service				
Description	Control	Movement ¹	Aver. Delay (Sec. / Veh.)	LOS		
Wasatch Boulevard / S.R. 210	Signal	-	26.8	С		
La Caille Access / Wasatch Boulevard	WB Stop	WBL	18.6	C		
S.R. 209 / S.R. 210	Signal	-	19.4	В		
La Caille Lane / S.R. 210	Signal	-	2.3	A		
P1 Out / S.R. 210	NEB Stop	NER	2.2	а		
P1 In / S.R. 210	Free	SER	0.9	а		
P2 / S.R. 210	WB Yield	SET	1.9	а		
P6 / La Caille Lane	SWB Stop	NWT	0.1	а		
P5 / La Caille Lane	SWB/NEB Stop	NER	2.7	а		

ated for unsignalized intersections where delay and LOS represents worst movement. SBL = Southbound left movement, sto used for signalized, roundabout, and AWSC intersections. Lowercase LOS used for all other unsignalized intersections.

Source: Hales Engineering, September 2020

VI. FUTURE (2050) BACKGROUND CONDITIONS

A. Purpose

The purpose of the future (2050) background analysis is to study the intersections and roadways during the peak travel periods of the day for future background traffic and geometric conditions. Through this analysis, future background traffic operational deficiencies can be identified, and potential mitigation measures recommended.

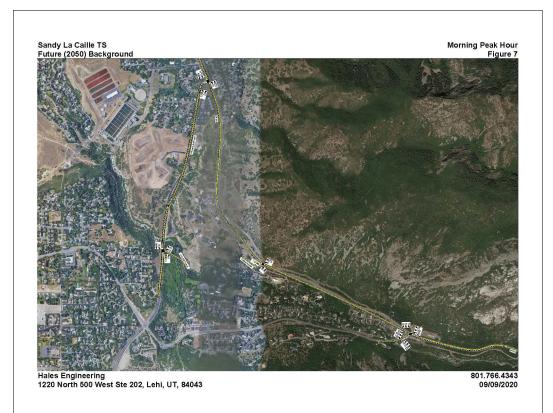
B. Roadway Network

According to the Wasatch Front Regional Council (WFRC) Regional Transportation Plan, Wasatch Boulevard is planned to be widened to 5 lanes from Bengal Boulevard to S.R. 209. For this reason, the Wasatch Boulevard / S.R. 210 intersection was changed from a High-T to a conventional intersection to accommodate the extra lanes. For the analysis, a northbound left-turn lane was installed, and dual left-turn lanes were installed on the eastbound approach. The channelized free right-turn on the southbound approach was kept for operational purposes.

C. Traffic Volumes

Hales Engineering utilized the 1.2% annual growth rate established in the Little Cottonwood Environmental Impact Statement to project the future turn volumes at the study intersections. Future (2050) background morning peak hour turning movement volumes are shown in Figure 7.

D. Level of Service Analysis


Hales Engineering determined that the S.R. 209 / S.R. 210 intersection is anticipated to operate at LOS E during the morning peak hour in future (2050) background conditions, as shown in Table 10. These results serve as a baseline condition for the impact analysis of the proposed development for future (2050) conditions.

E. Queuing Analysis

Hales Engineering calculated the 95^{th} percentile queue lengths for each of the study intersections. Some significant queuing is anticipated during the morning peak hour at the Wasatch Boulevard / S.R. 210 intersection (380 feet, southbound approach and 310 feet, eastbound approach) and at the S.R. 209 / S.R. 210 intersection (1,000 feet, eastbound approach).

F. Mitigation Measures

Any further mitigations to the S.R. 209 / S.R. 210 intersection for queuing would fall under the alternatives listed in the Little Cottonwood Environmental Impact Statement. For this reason, it is recommended that a gondola or extensive bus use be implemented to decrease traffic volumes.

Sandy - La Caille Station Traffic Impact Study

Table 10: Future (2050) Background Morning Peak Hour LOS

Intersection	Level of Service						
Description	Description Control Me		Description Control Movement ¹		Aver. Delay (Sec. / Veh.)	LOS ²	
Wasatch Boulevard / S.R. 210	Signal	-	27.7	с			
La Caille Access / Wasatch Boulevard	WB Stop	WBL	24.8	с			
S.R. 209 / S.R. 210	Signal	-	38.8	D			
Project Access / S.R. 210	WB Stop	NEL	18.9	с			

1. Movement indicated for unsignalized intersections where delay and LOS represents worst movement. SBL = Southbound left movement 2. Uppercase LOS used for signalized, roundabout, and AWSC intersections. Lowercase LOS used for all other unsignalized intersections Source: Hales Engineering, September 2020

VII. FUTURE (2050) PLUS PROJECT CONDITIONS

A. Purpose

The purpose of the future (2050) plus project analysis is to study the intersections and roadways during the peak travel periods of the day for future background traffic and geometric conditions plus the net trips generated by the proposed development. This scenario provides valuable insight into the potential impacts of the proposed project on future background traffic conditions.

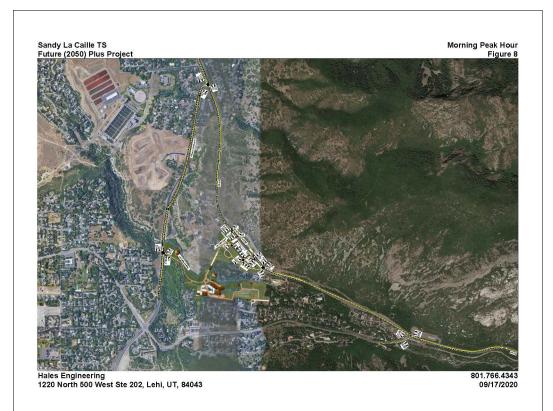
B. Traffic Volumes

Hales Engineering added the project trips discussed in Chapter III to the future (2050) background traffic volumes to predict turning movement volumes for future (2050) plus project conditions. Future (2050) plus project morning peak hour turning movement volumes are shown in Figure 8.

C. Level of Service Analysis

Hales Engineering determined that all intersections are anticipated to operate at acceptable levels of service during the morning peak hour in future (2050) plus project conditions, as shown in Table 11. Any improvement in LOS is likely due to the gondola diverting trips to and from Little Cottonwood Canyon.

D. Queuing Analysis


Hales Engineering calculated the 95th percentile queue lengths for each of the study intersections. Some significant queuing is anticipated during the morning peak hour at the S.R. 209 / S.R. 210 intersection (330 feet, eastbound approach).

E. Mitigation Measures

No mitigation measures are recommended.

F. Recommended Storage Lengths

Hales Engineering determined recommended storage lengths based on the 95th percentile queue lengths given in the future (2050) plus project scenario. These storage lengths do not include the taper length. Recommended storage lengths for the study intersections are shown in Table 12. Intersections shown in Table 12 include new intersections and existing intersections that have recommended storage length changes.

Sandy - La Caille Station Traffic Impact Study

Table 11: Future (2050) Plus Project Morning Peak Hour LOS

Intersection		Lev	vel of Service	
Description	Control	Movement ¹	Aver. Delay (Sec. / Veh.)	LOS ²
Wasatch Boulevard / S.R. 210	Signal	-	24.4	с
La Caille Access / Wasatch Boulevard	WB Stop	WBL	21.7	с
S.R. 209 / S.R. 210	Signal	-	25.3	С
La Caille Lane / S.R. 210	Signal	-	2.6	A
P1 Out / S.R. 210	NEB Stop	NER	2.3	а
P1 In / S.R. 210	Free	SER	1.0	а
P2 / S.R. 210	WB Yield	SET	2.1	а
P6 / La Caille Lane	SWB Stop	NWT	0.2	а
P5 / La Caille Lane	SWB/NEB Stop	NER	2.5	a

Movement indicated for unsignalized intersections where delay and LUS represents worst movement. SBL = Southbound left movement, etc Uppercase LOS used for signalized, roundabout, and AWSC intersections. Lowercase LOS used for all other unsignalized intersections.

Source: Hales Engineering, September 2020

Table 12: Recommended Storage Lengths

		-	N. COMP.				and the second second	one of the second s	CALCULATION CONTRACTOR		Leng	A STATISTICS - STAT	Men Miller		141		-
	Intersection	-	North			_		boun		_	Eastb	-			West		
			LT	F	RT	L	Т	R	RT.	L	.Т	F	RT		LT	F	۲F
		Е	Ρ	Е	Ρ	Е	Ρ	Е	Ρ	Е	Ρ	Е	Ρ	Е	Ρ	Е	
1	Wasatch Boulevard / S.R. 210	101	100	-	÷	-		- 20		-		120		-		100	
2	La Caille Lane / S.R. 210	525	150	-2	-	-	811	-	-	2	20	320	1	2	150	826	
3	S.R. 209 / S.R. 210	192	-	-	200	-	80	-	-	-	÷.	9 2 1	141	-	Ĩ	1940	
4	P2 In / S.R. 210	120		-	-	-	110	-	<u> </u>	2	-	3 4 3	100	-	<u> </u>	120	
	orage lengths are based on 95th percentil = Existing storage length (approximate), if se: Hales Engineering, September													g turr	ı lanes, i	f appl	lic
														g turr	i lanes, i	f appl	lica

Sandy - La Caille Station Traffic Impact Study

VIII. LA CAILLE GONDOLA ADVANTAGES

A. Purpose

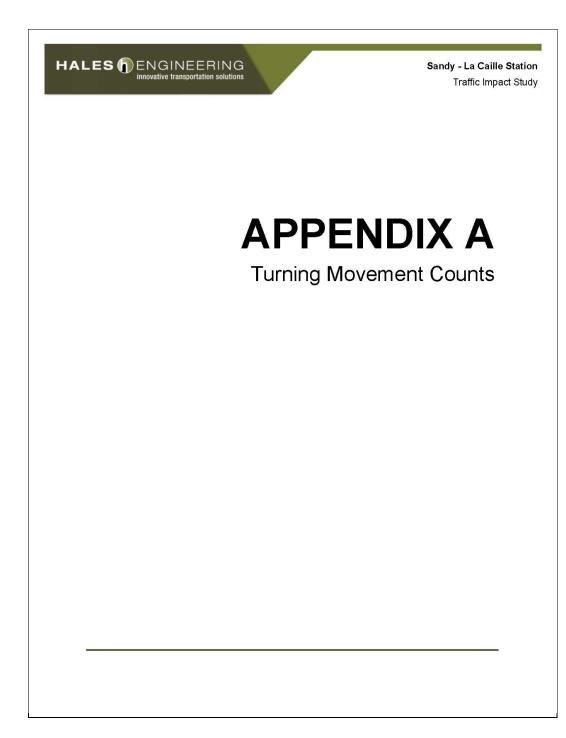
The purpose of this chapter is to outline the reasons why a gondola may be preferable to the alternatives of taking no action or increasing bus service and improving bus infrastructure. The construction of a gondola system would have several benefits, which are shown in this chapter. While UDOT chose to evaluate gondola alternative 3B with a base station at the mouth of Little Cottonwood Canyon, the La Caille site would provide additional benefits, such as increased parking and better public transit integration.

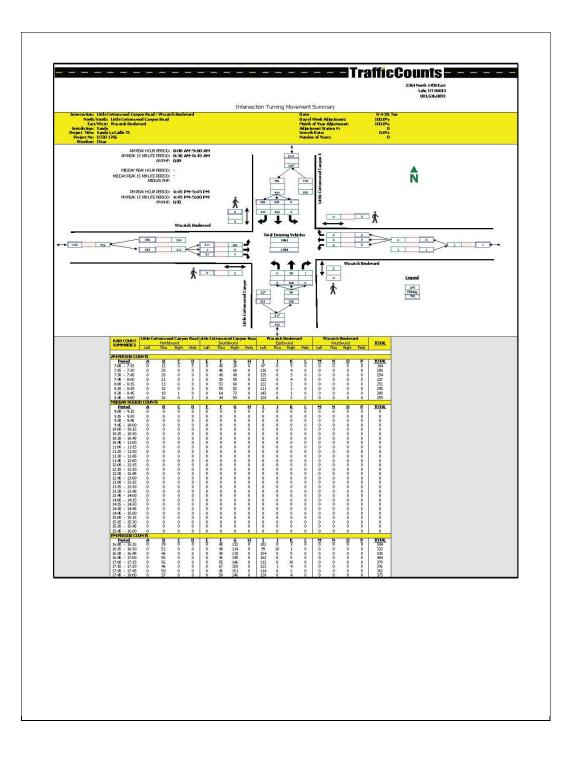
B. Enhanced Bus Comparison

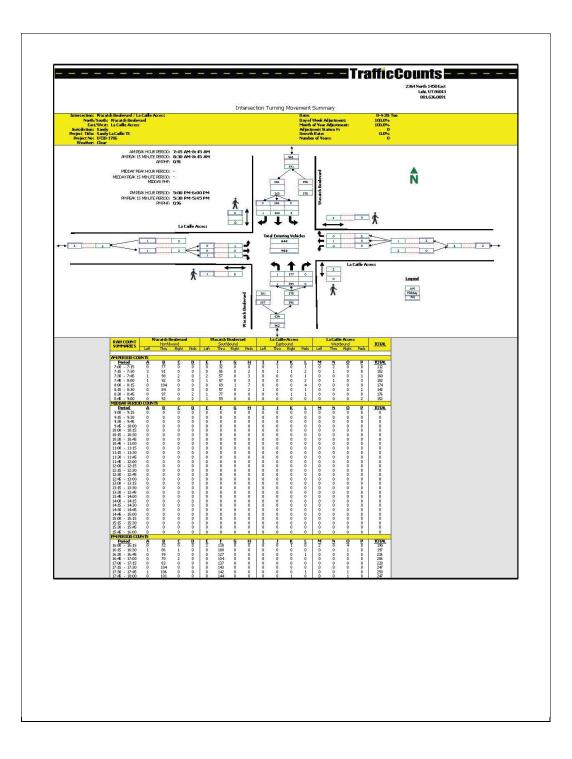
Enhanced bus scenarios have been analyzed as a part of the preliminary documents for the Little Cottonwood Canyon EIS. In the scenario with the highest bus volume, the bus ridership is the same as the projected ridership for the gondola. In addition, the volume of personal vehicles going up the canyon was projected to be the same.

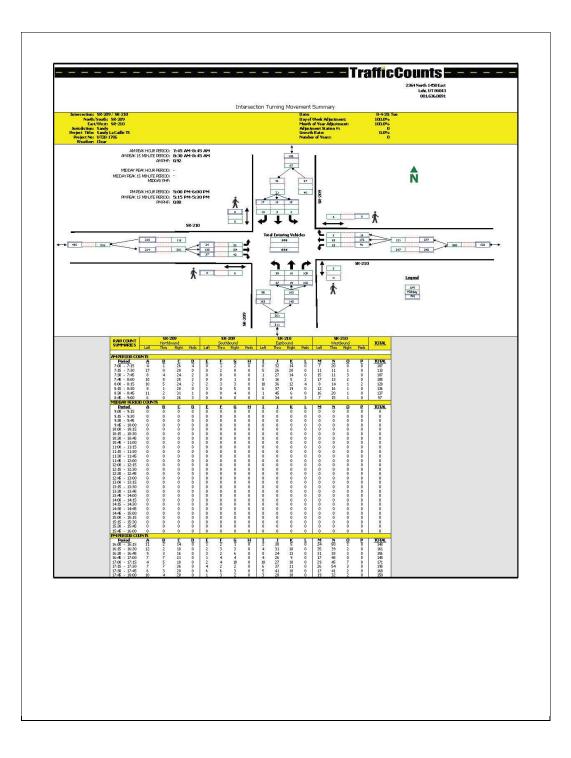
A small analysis was run to compare the difference in traffic conditions with the bus scenario and the gondola scenario at the S.R. 209 / S.R. 210 intersection. It was determined that the projected 24 buses per hour would increase the volume-to-capacity (V/C) ratio of the eastbound through movement by 0.03 compared to the gondola scenario, meaning that the difference between the two, from a morning peak hour traffic perspective, would be almost negligible at this intersection.

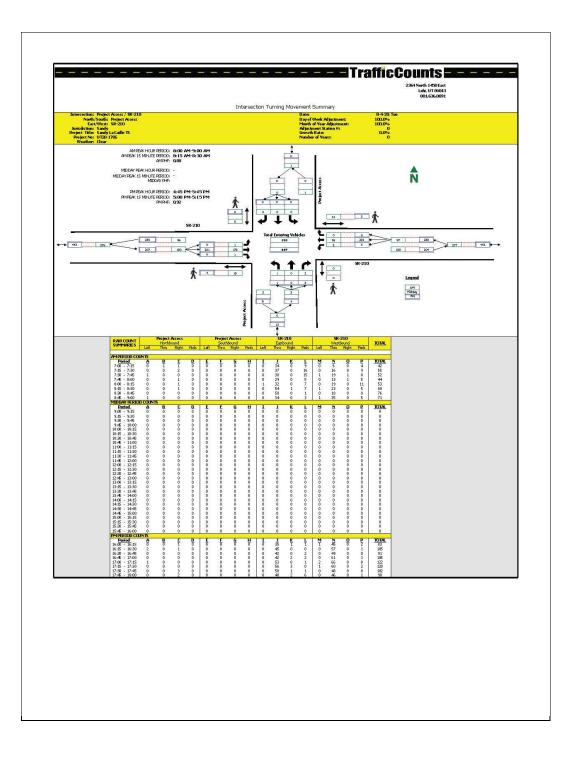
The primary advantage that the gondola will have over the enhanced bus alternative without widening is on days when Little Cottonwood Canyon is closed either due to an avalanche or avalanche control. It is common knowledge that on some mornings during the winter season that traffic will back up for miles outside of the canyon, and the gondola could serve to mitigate it as it can remain operational while S.R. 210 is closed.


Snow sheds were evaluated with one of the enhanced bus scenarios that proposed widening S.R. 210 with a bus lane. While this would mitigate the potential issues with avalanche-related queueing, both the capital costs and the operational/maintenance costs were projected to be significantly higher than the gondola alternative in the EIS. Additionally, while avalanche-related canyon closures would be mitigated in this bus alternative, road closures due to crashes would not.


C. Gondola Advantages


As outlined in the preliminary documents for the Little Cottonwood Canyon EIS, a gondola system through Little Cottonwood Canyon is a viable alternative to increase the capacity of traffic flow in the canyon now and in the future. The gondola has been identified by UDOT as the most feasible Aerial Transit System (ATS) for the canyon.





HALES DENGINEERING

APPENDIX B

LOS Results

SimTraffic LOS Report

Project: Analysis Period: Time Period: Sandy La Caille TS Existing (2020) Background Morning Peak Hour Project #: UT20-1706

Intersection:

SR-210 & Wasatch Boulevard

туре:		Signalized				
ā nu na a ala	Diamana ant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	т	189	193	102	1.1	A
NB						
	Subtotal	189	193	102	1.1	А
2	т	765	730	95	117.6	F
SB	R	403	380	94	51.1	D
	Subtotal	1,168	1,110	95	94.8	F
	L	831	793	95	102.9	F F
EB	R	11	10	89	82.9	F
	Subtotal	842	803	95	102.7	F
Total		2,199	2,106	96	89.9	F

Intersection: Type: Wasatch Boulevard & La Caille Access Unsignalized

Type.		onsignalized				
1 mm ma a ala	Mourant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	T.	740	738	100	1.1	А
NB	R	2	2	100	0.9	А
57	Subtotal	742	740	100	1.1	A
	L	2	2	100	5.8	А
SB	т	422	398	94	1.3	A
	Subtotal	424	400	94	1.3	A
	L	2	2	100	11.0	В
WB	R	2	2	100	5.7	А
	Subtotal	4	4	100	8.4	А
Total		1,170	1,144	98	1.2	A

SimTraffic LOS Report

Project: Analysis Period: Time Period: Sandy La Caille TS Existing (2020) Background Morning Peak Hour

Project #: UT20-1706

Intersection: Type: SR-209 & SR-210 Unsignalized

Type:		unsignalized				
0 mm ma a ala	Blausmant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	111	104	94	9.7	A
EB	т	597	572	96	12.1	В
CD	R	69	64	93	9.1	A B
	Subtotal	777	740	95	11.5	В
0	L	87	85	98	9.5	A
WВ	т	104	107	103	1.2	A
VVD	R	8	9	109	0.6	A A
	Subtotal	199	201	101	4.7	A
	L	64	61	96	154.3	F
NE	Т	26	23	88	152.2	F F F
NE	R	481	456	95	125.5	F
	Subtotal	571	540	95	129.9	F
	L	8	8	97	15.4	С
~~	т	5	6	114	19.2	С
SW	R	21	24	114	3.8	C A
	Subtotal	34	38	112	8.7	A
Total		1,581	1,519	96	56.3	F

Intersection:

Project Access & SR-210

Туре:		Unsignalized				
(Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	τ	774	737	95	2.2	A
EB	R	2	2	100	0.8	А
	Subtotal	776	739	95	2.2	А
	L	2	1	50	14.4	В
WB	т	187	191	102	1.6	А
	Subtotal	189	192	102	1.7	А
	L	2 2	1	50	6.2	А
NE	R	2	3	150	4.8	А
	Subtotal	4	4	100	5.2	A
Total		969	935	96	2.1	A

		evard	Perfor	mance	by mo	oveme	nt					
Movement	EBL	EBR	NBT	SBT	SBR	All						
Denied Delay (hr)	1.4	0.0	0.0	0.3	0.1	1.8						
Denied Del/Veh (s)	6.1	9.2	0.0	1.3	1.3	3.0						
Total Delay (hr)	24.3	0.2	0.1	25.6	5.7	55.9						
Total Del/Veh (s)	102.9	82.9	1.1	117.6	51.1	89.9						
Vehicles Entered	826	10	193	758	392	2179						
Vehicles Exited	793 793	10 10	193 193	730 730	380 380	2106 2106						
Hourly Exit Rate Input Volume	831	10	189	765	403	2106						
% of Volume	95	89	103	95	94	96						
2: Wasatch Boule	vard & La	a Caille	Acce	ss Per	formai	nce by	move	ment				
Movement	WBL	WBR	NBT	NBR	SBL	SBT	All					
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.0	0.0	0.1					
Denied Del/Veh (s)	0.1	0.1	0.6	0.5	0.2	0.0	0.4					
Total Delay (hr)	0.0	0.0	0.2	0.0	0.0	0.1	0.4					
Total Del/Veh (s)	11.0	5.7	1.1	0.9	5.8	1.3	1.2					
Vehicles Entered	2	2	736 738	2	2	398 398	1142 1144					
Vehicles Exited Hourly Exit Rate	2	2	738	2	2	398	1144					
Input Volume	2	2	740	2	2	422	1170					
% of Volume	100	100	100	100	100	94	98					
3: SR-209 & SR-2 Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SW
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.4	0.5	0.1	0.2	0.
Total Delay (hr)	0.3	2.0	0.2	0.2	0.0	0.0	3.0	1.1	18.4	0.0	0.0	0.
Total Del/Veh (s)	9.7	12.1	9.1	9.5	1.2	0.6	154.3	152.2	125.5	15.4	19.2	3.
Vehicles Entered Vehicles Exited	103 104	574 572	65 64	85 85	107 107	9 9	64 61	25 23	490 456	8 8	6 6	2
Hourly Exit Rate	104	572	64	85	107	9	61	23	456	0 8	6	2
Input Volume	111	597	69	87	104	8	64	26	481	8	5	2
% of Volume	94	96	93	98	103	109	96	88	95	97	114	11
3: SR-209 & SR-2	210 Perfo	rmance	e by m	noveme	ent							
Movement Denied Delay (hr)	All 0.1											
Denied Delay (nr) Denied Del/Veh (s)	0.1											
Total Delay (hr)	25.3											
Total Del/Veh (s)	56.3											
Vehicles Entered	1560											
Vehicles Exited	1519											
Hourly Exit Rate	1519											
Input Volume	1581											
%of Volume	96											

Existing (2020) B 4: Project Access			ormano	ce by r	novem	ent		09/04/2
Movement	EBT	EBR	WBL	WBT	NEL	NER	All	
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.1	0.1	0.0	
Total Delay (hr)	0.5	0.0	0.0	0.1	0.0	0.0	0.5	
Total Del/Veh (s)	2.2	0.8	14.4	1.6	6.2	4.8	2.1	
Vehicles Entered	738	2	1	191	1	3	936	
Vehicles Exited	737	2	1	191	1	3	935	
Hourly Exit Rate	737	2	1	191	1	3	935	
Input Volume	774	2	2	187	2	2	969	
% of Volume	95	100	50	102	50	150	96	
Total Network Pe	rformance							
Denied Delay (hr)			2.0					
Denied Del/Veh (s)			2.6					
Total Delay (hr)			91.7					
Total Del/Veh (s)			108.7					
Vehicles Entered			2832					
Vehicles Exited			2717					
Hourly Exit Rate			2717					
Input Volume % of Volume			13121 21					

Hales Engineering 1220 North 500 West, Ste. 202, Lehi, Utah 84043 801.766.4343 Page 2

Existing (2020) Bad	S Skgroun	d						ning Pea 0	8/04/2020
Intersection: 1: SR	-210 & V	Vasato	h Bou	levard					
Movement	EB	EB	SB	SB					
Directions Served	L	R	Т	R					
Maximum Queue (ft)	350	1574	2130	750					
Average Queue (ft)	337	749	920	305					
95th Queue (ft)	391	1710	2229	913					
Link Distance (ft) Upstream Blk Time (%)		2844	5004						
Queuing Penalty (veh)									
Storage Bay Dist (ft)	250			650					
Storage Blk Time (%)	45		24						
Queuing Penalty (veh)	5		98						
Intersection: 2: Wa	satch B	ouleva	rd & L	a Caill	e Acce	ess			
Movement	WB	SB							
Directions Served	LR	L							
Maximum Queue (ft)	18	18							
Average Queue (ft)	2	1							
95th Queue (ft)	9	9							
Link Distance (ft) Upstream Blk Time (%)	634								
Queuing Penalty (veh)									
Storage Bay Dist (ft)		120							
Storage Blk Time (%)									
Queuing Penalty (veh)	-209 & S	SR-210)						
Queuing Penalty (veh) Intersection: 3: SR Movement	EB	EB	WB	WB	NE	SW			
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served	EB	EB TR	WB L	TR	LTR	LTR			
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft)	EB L 42	EB TR 142	WB L 74	TR 2	LTR 1375	LTR 37			
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft)	EB L 42 10	EB TR 142 25	WB L 74 22	TR 2 0	LTR 1375 605	LTR 37 14	-		
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)	EB L 42	EB TR 142 25 92	WB L 74	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)	EB L 42 10	EB TR 142 25	WB L 74 22	TR 2 0	LTR 1375 605	LTR 37 14		-	
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)	EB L 42 10 32	EB TR 142 25 92	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	EB L 42 10	EB TR 142 25 92 3539	WB L 74 22	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31			
Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	EB L 42 10 32	EB TR 142 25 92 3539	WB L 74 22 55	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31		904	766 4242
Queuing Penalty (veh) Intersection: 3: SR Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB L 42 10 32	EB TR 142 25 92 3539 0 1	WB L L 22 55 125	TR 2 0 2	LTR 1375 605 1350	LTR 37 14 31		801.	766.4343 Page 3

Existing (2020) Ba	ackground		09/04/20
Intersection: 4: Pr	oject Acc	ess & SR-210	
Movement	WB	NE	
Directions Served	LT	LR	
Maximum Queue (ft)	17	18	
Average Queue (ft)	1	2	
95th Queue (ft)	16	12	
Link Distance (ft)	3539	562	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Network Summary	y		
Network wide Queuing Pe	nalty: 104		
Hales Engineering 1220 North 500 West, Ste			801.766.43 Page

Project: Analysis Period: Time Period: Sandy La Caille TS Mitigated Existing (2020) Background Morning Peak Hour Project #: UT20-1706

Intersection:

SR-210 & Wasatch Boulevard

Type:		Signalized				
0 mm ma a ala	Diamana ant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	т	189	185	98	1.1	А
NB						
	Subtotal	189	185	98	1.1	А
2	Т	765	754	99	29.0	С
SB	R	403	397	99	7.9	А
	Subtotal	1,168	1,151	99	21.7	С
	L	831	834	100	28.1	С В
EB	R	11	10	89	10.5	В
	Subtotal	842	844	100	27.9	С
Total		2,199	2,180	99	22.4	С

Intersection: Type: Wasatch Boulevard & La Caille Access Unsignalized

13001		enorginaneou				
Ánnraach	Movement	Demand	Volume	Served	Delay/Ve	h (sec)
Арргоасн	wovement	Volume	Avg	%	Avg	LOS
	T.	740	740	100	1.1	A
NB	R	2	2	100	0.5	А
	Subtotal	742	742	100	1.1	A
	L	2	1	50	7.5	A
SB	т	422	420	99	1.5	А
	Subtotal	424	421	99	1.5	А
	L	2	1	50	8.8	A
WB	R	2	3	150	6.7	А
	Subtotal	4	4	100	7.2	А
Total		1,170	1,167	100	1.2	A

Project: Analysis Period: Time Period: Sandy La Caille TS Mitigated Existing (2020) Background Morning Peak Hour Project #: UT20-1706

Intersection: Type: SR-209 & SR-210 Unsignalized

Type:		unsignalized				
Approach	Movement	Demand	Volume	Served	Delay/Ve	h (sec)
мрргоасп	wovement	Volume	Avg	%	Avg	LOS
	L	111	112	101	8.2	A
EB	т	597	589	99	10.5	В
ED	R	69	64	93	8.2	А
	Subtotal	777	765	98	10.0	А
0	L	87	85	98	9.0	A
WВ	т	104	102	98	1.2	A
VVD	R	8	8	97	0.5	A
	Subtotal	199	195	98	4.6	A
	L	64	64	100	49.5	E
NE	Т	26	26	100	48.1	E D
NE	R	481	484	101	28.5	D
	Subtotal	571	574	101	31.7	D
	L	8	8	97	21.2	С
~~~	т	5	4	76	30.0	D
SW	R	21	21	100	4.7	А
	Subtotal	34	33	97	11.8	В
Total		1,581	1,567	99	17.6	С

Intersection:

Туре:		Unsignalized				
/		Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	τ	774	763	99	1.8	A
EB	R	2	2	100	1.0	А
	Subtotal	776	765	99	1.8	A
	L	2	1	50	7.8	А
WB	т	187	185	99	1.6	А
	Subtotal	189	186	98	1.6	А
	L	<b>2</b> 2	1	50	11.4	В
NE	R	2	2	100	8.1	А
	Subtotal	4	3	75	9.2	A
Total		969	954	98	1.8	А

	atch Boul	evard	Perfor	mance	by m	oveme	nt					
Movement	EBL	EBR	NBT	SBT	SBR	All						
Denied Delay (hr)	0.1	0.0	0.0	0.0	0.0	0.2						
Denied Del/Veh (s)	0.6	0.1	0.0	0.2	0.2	0.3						
Total Delay (hr)	6.7	0.0	0.1	6.2	0.9	13.9						
Total Del/Veh (s) Vehicles Entered	28.1 835	10.5 10	1.1 186	29.0 754	7.9 400	22.4 2185						
Vehicles Exited	834	10	185	754	397	2185						
Hourly Exit Rate	834	10	185	754	397	2180						
Input Volume	831	11	189	765	403	2199						
% of Volume	100	89	98	99	99	99						
2: Wasatch Boule	ward & La	a Caille	Acce	ss Perl	ormai	nce by	mover	ment				
Movement	WBL	WBR	NBT	NBR	SBL	SBT	All					
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.0	0.0	0.1					
Denied Del/Veh (s)	0.1	0.1	0.6	0.3	0.0	0.0	0.4					
Total Delay (hr)	0.0	0.0	0.2	0.0	0.0	0.2	0.4					
Total Del/Veh (s) Vehicles Entered	8.8 1	6.7 3	1.1 739	0.5 2	7.5	1.5 420	1.2 1166					
Vehicles Exited	1	3	740	2	1	420	1167					
Hourly Exit Rate	1	3	740	2	1	420	1167					
Input Volume	2	2	740	2	2	422	1170					
% of Volume	50	150	100	100	50	99	100					
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWF
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.
		0.0	0.0 0.1	0.0	0.0 0.0	0.0	0.4 0.9	0.4 0.4	0.4 4.1	0.2	0.1 0.0	0. 0.
Denied Del/Veh (s)	0.0			0.2	0.0	0.0						υ.
Denied Del/Veh (s) Total Delay (hr)	0.3	1.8		۵0	12	0.5	40.5	48.1	28.5		30.0	Δ
Denied Del/Veh (s) Total Delay (hr) Total Del/Veh (s)	0.3 8.2	10.5	8.2	9.0 85	1.2 101	0.5	49.5 63	48.1 26	28.5 484	21.2	30.0 4	
Denied Del/Veh (s) Total Delay (hr)	0.3			9.0 85 85	1.2 101 102	0.5 8 8	49.5 63 64	48.1 26 26	28.5 484 484	21.2 8 8	30.0 4 4	2
Denied Del/Veh (s) Total Delay (hr) Total Del/Veh (s) Vehicles Entered	0.3 8.2 112	10.5 591	8.2 64	85	101	8	63	26	484	8	4	2 2
Denied DelWeh (s) Total Delay (hr) Total DelVeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.3 8.2 112 112 112 112 111	10.5 591 589 589 589 597	8.2 64 64 64 69	85 85 85 87	101 102 102 104	8 8 8 8	63 64 64 64	26 26 26 26	484 484	8 8 8	4 4 4 5	4. 2 2 2 2
Denied Del/Veh (s) Total Delay (hr) Total Del/Veh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate	0.3 8.2 112 112 112	10.5 591 589 589	8.2 64 64 64	85 85 85	101 102 102	8 8 8	63 64 64	26 26 26	484 484 484	8 8 8	4 4 4	2 2 2 2
Denied DelWeh (s) Total Delay (hr) Total DelVeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.3 8.2 112 112 112 111 111 101	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2
Denied DelVeh (s) Total Delvyeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 Movement	0.3 8.2 112 112 112 111 101 210 Perfo All	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2
Denied DeWeh (s) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 <u>Movement</u> Denied Delay (hr)	0.3 8.2 112 112 112 111 101 210 Perfo All 0.1	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2
Denied DeWeh (s) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelvYeh (s)	0.3 8.2 112 112 112 111 101 210 Perfo All 0.1 0.2	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2
Denied DeWeh (s) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr)	0.3 8.2 112 112 112 111 101 210 Perfo All 0.1 0.2 7.9	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2
Denied DeV/eh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr)	0.3 8.2 112 112 112 111 101 210 Perfo All 0.1 0.2	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2
Denied DeWeh (s) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 <u>Movement</u> Denied Delay (hr)	0.3 8.2 112 112 111 101 210 Perfo All 0.1 0.2 7.9 17.6	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2
Denied DeWeh (s) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Entered Vehicles Exited Hourly Exit Rate	0.3 8.2 112 112 111 01 210 Perfo All 0.1 0.2 7.9 17.6 1567 1567	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2
Denied DeV/eh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr) Tota	0.3 8.2 112 112 111 01 210 Perfo All 0.1 0.2 7.9 17.6 1567 1567 1567	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2
Denied DeV/eh (s) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr) Total Delay (hs) Vehicles Entered Vehicles Exited Hourly Exit Rate	0.3 8.2 112 112 111 01 210 Perfo All 0.1 0.2 7.9 17.6 1567 1567	10.5 591 589 589 597 99	8.2 64 64 64 69 93	85 85 85 87 98	101 102 102 104 98	8 8 8 8	63 64 64 64	26 26 26 26	484 484 484 481	8 8 8	4 4 4 5	2 2 2 2

4: Project Access &			rmand	o hy r	novem	ont		
Harmont		EBR	WBL				All	
Movement Denied Delay (hr)	EBT 0.0	0.0	0.0	WBT 0.0	NEL 0.0	NER 0.0	All 0.0	
Denied DelWeh (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (hr)	0.4	0.0	0.0	0.1	0.0	0.0	0.5	
Total Del/Veh (s)	1.8	1.0	7.8	1.6	11.4	8.1	1.8	
Vehicles Entered	763	2	1	186	1	2	955	
Vehicles Exited	763	2	1	185	1	2	954	
Hourly Exit Rate	763	2	1	185	1	2	954	
Input Volume	774	2	2	187	2	2	969	
%of Volume	99	100	50	99	50	100	98	
Denied Delay (hr)			0.4					
Denied Del/Veh (s)			0.5					
Total Delay (hr)			33.0					
Total DeWeh (s)			39.3					
Vehicles Entered			2828					
Vehicles Exited			2824 2824					
Hourly Exit Rate			13121					
% of Volume			22					

Mitigated Existing (	S (2020) E	Backgro	ound					Morning Peak Hour 09/04/2020
Intersection: 1: SR	-210 & V	Vasato	h Bou	levard				
Movement	EB	EB	SB	SB				
Directions Served	L	R	Т	T				
Maximum Queue (ft)	350	575	343	295				
Average Queue (ft) 95th Queue (ft)	273 389	106 430	176 290	120 246				
Link Distance (ft)	209	2832	5003	5003				
Upstream Blk Time (%)		LUUL	0000	0000				
Queuing Penalty (veh)								
Storage Bay Dist (ft)	250							
Storage Blk Time (%)	13							
Queuing Penalty (veh)	1							
Intersection: 2: Wa	satch B	ouleva	rd & L	a Caill	e Acce	SS		
Movement	WB	SB						
Directions Served	LR	L						
Maximum Queue (ft)	16	18						
Average Queue (ft)	2	1						
95th Queue (ft)	10	8						
Link Distance (ft)	634							
Upstream Blk Time (%)								
Queuing Penalty (veh) Storage Bay Dist (ft)		120						
Storage Blk Time (%)		120						
Queuing Penalty (veh)								
Intersection: 3: SR	-209 & S		) WB	WB	NE	NE	SW	
	FB	ER			1.1.1.1		(Q.09)	
Movement	EB	EB TR			LT	R	LTR	
	EB L 64	TR 127	69	TR 18	LT 163	R 253	LTR 50	
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	E	TR	L	TR				
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)	L 64	TR 127 22 83	L 69	TR 18 1 15	163 53 103	253	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft)	L 64 10	TR 127 22	L 69 21	TR 18 1	163 53	253 106	50 13	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	L 64 10	TR 127 22 83	L 69 21	TR 18 1 15	163 53 103	253 106	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh)	L 64 10 40	TR 127 22 83	L 69 21 51	TR 18 1 15	163 53 103	253 106 202	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	L 64 10	TR 127 22 83 3539	L 69 21 51	TR 18 1 15 2095	163 53 103 13893	253 106 202 200	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh)	L 64 10 40	TR 127 22 83	L 69 21 51	TR 18 1 15	163 53 103	253 106 202	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	L 64 10 40	TR 127 22 83 3539 0	L 69 21 51 125 0	TR 18 1 2095	163 53 103 13893 0	253 106 202 200 1	50 13 33	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) Sth Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh) Mueuing Penalty (veh)	L 64 10 40	TR 127 22 83 3539 0 0	L 69 21 51 125 0 0	TR 18 1 2095	163 53 103 13893	253 106 202 200 1	50 13 33	801.766.4343 Pare 2
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	L 64 10 40	TR 127 22 83 3539 0 0	L 69 21 51 125 0 0	TR 18 1 2095	163 53 103 13893	253 106 202 200 1	50 13 33	801.766.4343 Page 3

Intersection: 4: Project Access & SR-210	Mitigated Existing	(2020) D				09/04/202
Directions Served LT LR Maximum Queue (ft) 1 2 B8th Queue (ft) 1 3 LK bistance (ft) 333 562 Upsteam Bik Time (%) Queuing Penatry (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penatry (veh) Network Summary Network wide Queuing Penatry 4	Intersection: 4: Pre	oject Acc	ess & SR-21(	)		
Directions Served LT LR Maximum Queue (ft) 1 2 B8th Queue (ft) 1 3 LK bistance (ft) 333 562 Upsteam Bik Time (%) Queuing Penatry (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penatry (veh) Network Summary Network wide Queuing Penatry 4	Movement	WB	NE			
Maximum Queue (ft) 22 18 Average Queue (ft) 1 2 Shi Queue (ft) 13 12 Link bistarce (ft) 3539 562 Upstram Bik Time (%) Queuing Penalty (veh) Network Summary Network Summary Network wide Queuing Penalty: 4						
Average Cueue (tt) 1 2 98th Queue (tt) 13 12 Link Distance (tt) 3339 562 Upstream Bik Time (%) Queuing Penaty (veh) Network Summary Network wide Queuing Penaty: 4 Network wide Queuing Penaty: 4						
98th Ouceur (ft)       13       12         Link Distance (ft)       3539       562         Upstream Bik Time (%)       Storage Bay Dist (ft)         Storage Bay Dist (ft)       Storage Bay Dist (ft)         Network Summary       Network Summary         Network wide Queuing Penaty: 4						
Link Distance (f) 3539 562 Upsteam Bit Time (%) Queuing Penalty (veh) Network Summary Network Wide Queuing Penalty: 4	95th Queue (ft)		12			
Queuing Penalty (veh)         Storage Bay Dist (ft)         Storage Bay Dist (ft)         Network Summary         Network Summary         Network wide Queuing Penalty: 4	Link Distance (ft)	3539	562			
Storage Bix Time (%) Queuing Penaty (veh) Network Summary Network wide Queuing Penathy: 4	Upstream Blk Time (%)					
Storage Bik Time (%) Queuing Penalty (veh) Network Summary Network wide Queuing Penalty: 4						
Queuing Penalty (veh) Network Summary Network wide Queuing Penalty: 4						
Network Summary Network wide Queuing Penalty: 4						
Network wide Queuing Penalty: 4	Queung Penalty (ven)					
Network wide Queuing Penalty: 4	Network Summary	ý				
Hate Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hales Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hates Engineering 801.766.434						
Hales Engineering 801.766.434						
Hates Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
Hales Engineering 801.766.434						
1220 North 500 West, Ste. 202, Lehi, Utah 84043 Page						

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2025) Background Morning Peak Hour Project #: UT20-1706

Intersection: Type: SR-210 & Wasatch Boulevard Signalized

Type:		signalizeu				
Annroach	Movement	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	т	206	204	99	1.2	A
NB						
	Subtotal	206	204	99	1.2	A
3	Т	815	824	101	37.2	D
SB	R	430	429	100	8.6	А
	Subtotal	1,245	1,253	101	27.4	С
	L	885	890	101	36.8	D
EB	R	15	14	95	17.9	В
	Subtotal	900	904	100	36.5	D
Total		2,350	2,361	100	28.7	с

Intersection: Type: Wasatch Boulevard & La Caille Access Unsignalized

Type.		onsignalizeu				
1 mm ma a ala	Movement	Demand	Volume	Served	Delay/Ve	h (sec)
Арргоасн	wovement	Volume	Avg	%	Avg	LOS
	Т	785	789	100	1.2	A
NB	R	5	7	133	0.7	А
37	Subtotal	790	796	101	1.2	А
	L	5	5	95	7.3	A
SB	т	450	448	100	1.5	А
	Subtotal	455	453	100	1.6	A
	L	<b>5</b> 5	5	95	13.6	В
WB	R	5	6	114	6.8	А
	Subtotal	10	11	110	9.9	А
Total		1,256	1,260	100	1.4	A

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2025) Background Morning Peak Hour

Project #: UT20-1706

Intersection: Type: SR-209 & SR-210 Unsignalized

Type:		unsignalized				
1 mm ma a ala	Disconstant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	120	123	102	9.4	A
EB	т	635	638	100	11.8	В
ED	R	75	72	96	9.2	А
	Subtotal	830	833	100	11.2	A B
0	L	95	92	97	12.3	В
WВ	т	110	111	101	1.4	А
VVD	R	10	10	98	0.7	A A A
	Subtotal	215	213	99	6.1	A
	L	70	68	97	44.0	E
NE	Т	30	31	102	39.1	E
NE	R	515	522	101	6.5	E A B
	Subtotal	615	621	101	12.2	В
	L	10	10	98	22.5	С
~~~	т	10	11	107	29.2	D
SW	R	25	25	100	8.1	А
	Subtotal	45	46	102	16.3	С
Total		1,706	1,713	100	11.1	В

Intersection:

Туре:		Unsignalized				
		Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	τ	825	832	101	2.1	A
EB	R	5	6	114	1.1	А
	Subtotal	830	838	101	2.1	A
	L	5	5	95	5.9	A
WВ	т	200	198	99	1.8	А
	Subtotal	205	203	99	1.9	A
	L	5 5	4	76	13.4	В
NE	R	5	4	76	10.1	В
	Subtotal	10	8	80	11.8	В
Total		1,046	1,049	100	2.1	А

	atch Boul	evard	Perfor	mance	by m	oveme	nt					
Movement	EBL	EBR	NBT	SBT	SBR	All						
Denied Delay (hr)	0.1	0.0	0.0	0.0	0.0	0.2						
Denied DeWeh (s)	0.6	0.1	0.0	0.2	0.3	0.3						
Total Delay (hr) Total Del/Veh (s)	9.3 36.8	0.1	0.1	8.7 37.2	1.1 8.6	19.2 28.7						
Vehicles Entered	891	14	203	821	431	2360						
Vehicles Exited	890	14	204	824	429	2361						
Hourly Exit Rate	890	14	204	824	429	2361						
Input Volume % of Volume	885 101	15 95	206 99	815 101	430 100	2350 100						
2: Wasatch Boule							move	nent				
Movement	WBL	WBR	NBT	NBR	SBL	SBT	All					
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.0	0.0	0.1					
Denied Del/Veh (s)	0.1	0.1	0.6	0.6	0.4	0.0	0.4					
Total Delay (hr)	0.0	0.0	0.3	0.0	0.0	0.2	0.5					
Total Del/Veh (s)	13.6 5	6.8	1.2 789	0.7 7	7.3	1.5 449	1.4 1261					
Vehicles Entered Vehicles Exited	5	6 6	789	7	5	449	1261					
Hourly Exit Rate	5	6	789	7	5	448	1260					
Input Volume	5	5	785	5	5	450	1256					
% of Volume	95	114	100	133	95	100	100					
3: SR-209 & SR-2 Movement	210 Perfo EBL	rmance EBT	e by m EBR	oveme WBL	wBT	WBR	NEL	NET	NER	SWL	SWT	SWI
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.
Denied DeWeh (s)	0.0	0.0	0.0	0.0	0.0	0.0	1.3	1.3	3.4	0.1	0.1	0.
Total Delay (hr)	0.3	2.1	0.2	0.3	0.0	0.0	0.8	0.3	0.9	0.1	0.1	0.
rotar beidy (m)	9.4	11.8	9.2	12.3	1.4	0.7	44.0	39.1	6.5	22.5	29.2	8.
Total Del/Veh (s)		642	73	92	111	10	67 68	32	522	10	10	2
Total Del/Veh (s) Vehicles Entered	122	000	70					31	522	10	11	2
Total Del/Veh (s) Vehicles Entered Vehicles Exited	123	638	72	92	111	10		21	522			
Total Del/Veh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate	123 123	638	72	92	111	10	68	31 30	522	10	11	
Total Del/Veh (s) Vehicles Entered Vehicles Exited	123							31 30 102	522 515 101	10 10 98	11 10 107	2
Total Del/Veh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	123 123 120 102	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement	123 123 120 102 210 Perfo All	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr)	123 123 120 102 210 Perfo All 0.5	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeVveh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DeVveh (s)	123 123 120 102 210 Perfo All 0.5 1.1	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeVveh (s) Vehicles Entered Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DeVveh (s) Total Delay (hr)	123 123 120 102 210 Perfo All 0.5 1.1 5.3	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeVveh (s) Vehicles Entered Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DeVveh (s) Total Delay (hr)	123 123 120 102 210 Perfo All 0.5 1.1 5.3 11.1	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeVveh (s) Vehicles Entered Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DeVveh (s) Total Delay (hr)	123 123 120 102 210 Perfo All 0.5 1.1 5.3	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeVveh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total DeVveh (s) Vehicles Entered	123 123 120 102 210 Perfo All 0.5 1.1 5.3 11.1 1715	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeVveh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delvy (hs) Total Delay (hr) Total Delay (hs) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	123 123 120 102 210 Perfo All 0.5 1.1 5.3 11.1 1715 1713 1713 1706	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DeVveh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate	123 123 120 102 210 Perfo All 0.5 1.1 5.3 11.1 1715 1713 1713	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2
Total DelVeh (s) Vehicles Entered Vehicles Entered Hourly Exit Rate Input Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Hourle Entered Vehicles Entered Hourly Exit Rate Input Volume	123 123 120 102 210 Perfo All 0.5 1.1 5.3 11.1 1715 1713 1713 1706	638 635 100	72 75 96	92 95 97	111 110 101	10 10	68 70	30	515	10	10	2

Future (2025) Ba		0 Dorf	rmon	oo hu r	novom	ont		09/04/20
4. PTOJECT ACCESS	EBT	EBR	WBL	WBT	NEL	NER	All	
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (hr)	0.5	0.0	0.0	0.1	0.0	0.0	0.6	
Total Del/Veh (s)	2.1	1.1	5.9	1.8	13.4	10.1	2.1	
Vehicles Entered	830	6	5	199	5	4	1049	
Vehicles Exited	832	6	5	198	4	4	1049	
Hourly Exit Rate	832	6	5	198	4	4	1049	
Input Volume	825 101	5	5 95	200 99	5 76	5 76	1046	
% of Volume		114	95	99	76	76	100	
Total Network Pe	rformance	Э						
Denied Delay (hr)			0.9 1.1					
Denied Del/Veh (s) Total Delaγ (hr)			36.7					
Total Del/Veh (s)			40.8					
Vehicles Entered			3082					
Vehicles Exited			3081					
Hourly Exit Rate			3081					
Input Volume			14092					
% of Volume			22					

Future (2025) Back	6 kground							ning Peak Hour 09/04/2020
Intersection: 1: SR	-210 & V	Vasato	h Bou	levard				
Movement	EB	EB	SB	SB				ſ
Directions Served	L	R	Т	Т				
Maximum Queue (ft)	350	767	417	377				
Average Queue (ft)	301	225	219	162				
95th Queue (ft) Link Distance (ft)	394	751 2832	349 5003	304 5003				
Upstream Blk Time (%)		2032	5005	5005				
Queuing Penalty (veh)								
Storage Bay Dist (ft)	250							
Storage Blk Time (%)	20							
Queuing Penalty (veh)	3							
Intersection: 2: Wa	satch B	ouleva	rd & L	a Caille	Acce	SS		
Movement	WB	SB						1
Directions Served	LR	L						
Maximum Queue (ft)	16	33						
Average Queue (ft)	5	3						
95th Queue (ft)	17	19						
Link Distance (ft)	634							
Upstream Blk Time (%)								
Queuing Penalty (veh) Storage Bay Dist (ft)		120						
Storage Blk Time (%)		120						
Queuing Penalty (veh)								
		20 010	2					
Intersection: 2: CD								
Intersection: 3: SR				Sec. 1	10.1241			
Movement	EB	EB	WB	NE	NE	SW		i i i i i i i i i i i i i i i i i i i
Movement Directions Served	EB	EB TR	WB	LT	R	LTR		
Movement Directions Served Maximum Queue (ft)	EB L 48	EB TR 153	WB L 80	LT 151	R 182	LTR 58		
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	EB L 48 10	EB TR 153 31	WB L 80 24	LT 151 63	R 182 67	LTR 58 17		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)	EB L 48	EB TR 153 31 110	WB L 80	LT 151	R 182	LTR 58		
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	EB L 48 10	EB TR 153 31	WB L 80 24	LT 151 63 125	R 182 67	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh)	EB 48 10 33	EB TR 153 31 110	WB L 80 24 59	LT 151 63 125	R 182 67 144	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	EB L 48 10	EB TR 153 31 110 3534	WB L 80 24 59 125	LT 151 63 125 748	R 182 67 144 200	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125	LT 151 63 125 748	R 182 67 144 200	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh)	EB 48 10 33	EB TR 153 31 110 3534	WB L 80 24 59 125 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bik Time (%) Queuing Penalty (veh) Oueuing Penalty (veh)	EB L 48 10 33 100	EB TR 153 31 110 3534 1 1	WB L 80 24 59 125 0 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		801.766.4343 Dom 2
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 55th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh)	EB L 48 10 33 100	EB TR 153 31 110 3534 1 1	WB L 80 24 59 125 0 0	LT 151 63 125 748	R 182 67 144 200 0	LTR 58 17 40		801.766.4343 Page 3

Sandy La Caille T Future (2025) Bac	reground		 09/04/202
Intersection: 4: Pro	oject Acc	ess & SR-210	
Movement	WB	NE	
Directions Served	LT	LR	
Maximum Queue (ft)	50	24	
Average Queue (ft)	4	5	
95th Queue (ft)	25	20	
Link Distance (ft)	3534	562	
Upstream Blk Time (%)	3334	562	
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Network Summary	,		
Network wide Queuing Per			
Hales Engineering 1220 North 500 West, Ste.			801.766.434 Page

Project: Analysis Period: Time Period: Sandy La Caille TS Mitigated Future (2025) Background Morning Peak Hour Project #: UT20-1706

Intersection:

SR-210 & Wasatch Boulevard

Type:		Signalized				
1 mm ma a ala	Blausmant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	т	206	211	103	1.2	А
NB						
	Subtotal	206	211	102	1.2	А
2	τ	815	826	101	36.4	D
SB	R	430	433	101	8.9	А
	Subtotal	1,245	1,259	101	26.9	С
	L	885	881	100	34.7	С
EB	R	15	16	108	16.8	В
	Subtotal	900	897	100	34.4	С
Total		2,350	2,367	101	27.5	С

Intersection: Type: Wasatch Boulevard & La Caille Access Unsignalized

Type.		ensignalizea				
6 nn ra a ab	Movement	Demand	Volume	Served	Delay/Ve	h (sec)
Арргоасн	wovement	Volume	Avg	%	Avg	LOS
	T.	785	785	100	1.3	A
NB	R	5	7	133	0.9	А
	Subtotal	790	792	100	1.3	А
	L	5	4	76	10.2	В
SB	т	450	455	101	1.5	А
	Subtotal	455	459	101	1.6	A
	L	5 5	4	76	13.2	В
WB	R	5	5	95	5.1	А
	Subtotal	10	9	90	8.7	А
Total		1,256	1,260	100	1.4	A

Page 32B-13907

Project: Analysis Period: Time Period: Sandy La Caille TS Mitigated Future (2025) Background Morning Peak Hour

Project #: UT20-1706

Intersection: Type: SR-209 & SR-210 Signalized

Type.		signalizeu				
1 mm ma a ala	Diamana ant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	120	114	95	18.2	В
EB	т	635	649	102	23.4	С
ED	R	75	79	105	14.8	С В С
	Subtotal	830	842	101	21.9	С
0	L	95	95	100	18.6	В
WВ	т	110	106	97	4.7	А
VVD	R	10	10	98	1.6	A A B
	Subtotal	215	211	98	10.8	В
	L	70	74	106	42.7	D
NE	т	30	29	96	41.0	D
INE	R	515	525	102	26.9	D C
	Subtotal	615	628	102	29.4	С
	L	10	12	117	21.1	С
~~	т	10	12	117	21.8	С
SW	R	25	26	104	5.6	Ā
	Subtotal	45	50	111	13.2	В
Total		1,706	1,731	101	23.2	С

Intersection:

Туре:		Unsignalized				
a service and service and		Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	-τ	825	837	101	2.0	A
EB	R	5	6	114	0.9	A
	Subtotal	830	843	102	2.0	А
	L	5	5	95	9.2	А
WВ	т	200	205	102	2.7	А
	Subtotal	205	210	102	2.9	А
	L	5	5	95	11.2	В
NE	R	5	6	114	7.5	А
	Subtotal	10	11	110	9.2	A
Total		1,046	1,064	102	2.3	A

1: SR-210 & Was	(2025) Ba atch Boul			mance	by m	oveme	nt				1.0010030	
Movement	EBL	EBR	NBT	SBT	SBR	All						
Denied Delay (hr)	0.1	0.0	0.0	0.1	0.0	0.2						
Denied Del/Veh (s)	0.6	0.1	0.0	0.2	0.3	0.3						
Total Delay (hr)	8.7	0.1	0.1	8.6	1.1	18.5						
Total Del/Veh (s)	34.7	16.8	1.2	36.4	8.9	27.5						
Vehicles Entered Vehicles Exited	883 881	16 16	210 211	828 826	434 433	2371 2367						
Hourly Exit Rate	881	16	211	826	433	2367						
Input Volume	885	15	206	815	430	2350						
% of Volume	100	108	103	101	101	101						
2: Wasatch Boule	evard & La	a Caille	Acce	ss Perl	formai	nce by	mover	ment				
Movement	WBL	WBR	NBT	NBR	SBL	SBT	All					
Denied Delay (hr)	0.0	0.0	0.1	0.0	0.0	0.0	0.2					
Denied DeWeh (s)	0.1	0.1	0.7	0.5	0.2	0.0	0.4					
Total Delay (hr)	0.0	0.0	0.3	0.0	0.0	0.2	0.5					
Total Del/Veh (s)	13.2 4	5.1 5	1.3 784	0.9	10.2 4	1.5 454	1.4					
Vehicles Entered Vehicles Exited	4	5	785	6 7	4	454	1257 1260					
Hourly Exit Rate	4	5	785	7	4	455	1260					
Input Volume	5	5	785	5	5	450	1256					
% of Volume	76	95	100	133	76	101	100					
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NEL	NET	NER	SWL	SWT	SWI
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.
Denied Del/Veh (s) Total Delay (hr)	0.0 0.6	0.0 4.3	0.0	0.0 0.5	0.0 0.1	0.0 0.0	0.5 0.9	0.5 0.4	0.5 4.2	0.1 0.1	0.2	0. 0.
Total Del/Veh (s)	18.2	23.4	14.8	18.6	4.7	1.6	42.7	41.0	26.9	21.1	21.8	0. 5.
Vehicles Entered	114	650	79	95	106	10	73	30	526	12	12	2
Vehicles Exited	114	649	79	95	106	10	74	29	525	12	12	2
	114	649	79	95	106	10	74	29	525	12	12	2
Hourly Exit Rate	120	635	75	95	110	10	70	30	515	10	10	2
Hourly Exit Rate Input Volume	95	102	105	100	97	98	106	96	102	117	117	10
Input Volume %of Volume <u>3: SR-209 & SR-2</u>	210 Perfo	rmanc	e by m	oveme	ent							
Input Volume %of Volume 3: SR-209 & SR-2 Movement	210 Perfo All	rmanco	e by m	oveme	ent							
Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr)	210 Perfo All 0.1	rmance	e by m	oveme	ent							
Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DeWeh (s)	210 Perfo All 0.1 0.2	rmanco	e by m	oveme	ent							
Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr)	210 Perfo All 0.1	rmanco	e by m	oveme	ent							
Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelV/eh (s) Total Delay (hr)	210 Perfo All 0.1 0.2 11.6	rmance	e by m	oveme	ent							
Input Volume %of Volume <u>3: SR-209 & SR-2</u> Movement Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total Delay (hr)	210 Perfo All 0.1 0.2 11.6 23.2	rmanco	e by m	oveme	ent							
Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelV/eh (s) Total DelV/eh (s) Total DelV/eh (s) Vehicles Entered Vehicles Entered Hourly Exit Rate	210 Perfo All 0.1 0.2 11.6 23.2 1733 1731 1731	rmanco	e by m	oveme	ent							
Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	210 Perfo All 0.1 0.2 11.6 23.2 1733 1731 1731 1731 1706	rmanco	e by m	oveme	ent							
Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelV/eh (s) Total DelV/eh (s) Total DelV/eh (s) Vehicles Entered Vehicles Entered Hourly Exit Rate	210 Perfo All 0.1 0.2 11.6 23.2 1733 1731 1731	rmanc	e by m	oveme	ent							
Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delveh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	210 Perfo All 0.1 0.2 11.6 23.2 1733 1731 1731 1731 1706	rmanco	e by m	oveme	ent							

Mitigated Future (4: Project Access				ce hv r	novem	ent		
Movement	EBT	EBR	WBL	WBT	NEL	NER	All	
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Denied DelWeh (s)	0.0	0.0	0.0	0.0	0.1	0.1	0.0	
Total Delay (hr)	0.5	0.0	0.0	0.2	0.0	0.0	0.7	
Total Del/Veh (s)	2.0	0.9	9.2	2.7	11.2	7.5	2.3	
Vehicles Entered	836	6	5	203	5	6	1061	
Vehicles Exited	837	6	5	205	5	6	1064	
Hourly Exit Rate	837	6	5	205	5	6	1064	
Input Volume	825	5	5	200	5	5	1046	
% of Volume	101	114	95	102	95	114	102	
Denied Delay (hr)			0.5					
Denied Del/Veh (s)			0.6					
Total Delay (hr)			43.4					
Total Del/Veh (s)			47.1					
Vehicles Entered			3097					
Vehicles Exited			3096					
Hourly Exit Rate			3096					
Input Volume % of Volume			14092 22					

Sandy La Caille TS Mitigated Future (2		ickgrou	und				IV	lorning Peak Hour 09/04/2020
Intersection: 1: SR	-210 & \	Nasato	h Bou	levard				
Movement	EB	EB	SB	SB				
Directions Served	L	R	Т	T				
Maximum Queue (ft)	350	753	387	347				
Average Queue (ft)	301 399	209 652	218 352	163 306				
95th Queue (ft) Link Distance (ft)	299	2832	5003	5003				
Upstream Blk Time (%)		2002	0000	0000				
Queuing Penalty (veh)								
Storage Bay Dist (ft)	250							
Storage Blk Time (%)	20							
Queuing Penalty (veh)	3							
Intersection: 2: Wa	satch B	ouleva	rd & L	a Cail	e Acce	ss		
Movement	WB	SB					 	i i
Directions Served	LR	L					 	
Maximum Queue (ft)	18	33						
Average Queue (ft)	4	4 20						
95th Queue (ft) Link Distance (ft)	15 634	20						
Upstream Blk Time (%)	034							
Queuing Penalty (veh)								
Storage Bay Dist (ft)		120						
Storage Blk Time (%) Queuing Penalty (veh)								
Intersection: 3: SR	-209 & C	EB	WB	WB	NE	SW		
Directions Served	L	TR	L	TR	LT	LTR		
Maximum Queue (ft)	199	456	76	74	118	57		
Average Queue (ft)	46	161	33	20	46	17		
95th Queue (ft)	138	339	66	53	90	41		
Link Distance (ft)		3539		2079	13898	234		
Upstream Blk Time (%)								
Queuing Penalty (veh) Storage Bay Dist (ft)	100		125					
Storage Blk Time (%)	0	13	120	0				
Queuing Penalty (veh)	0	16		0				
Hales Engineering 1220 North 500 West, Ste. 2	202 1	Hab 0404	2					801.766.4343 Page 3

Mitigated Future (2	2020) Da	onground			09/04/202
Intersection: 4: Pro	oject Acc	ess & SR-21()		
Movement	WB	NE			
Directions Served	LT	LR			
Maximum Queue (ft)	60	24			
Average Queue (ft)	5	6			
95th Queue (ft)	33	22			
Link Distance (ft)	3539	562			
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)					
Storage Blk Time (%) Queuing Penalty (veh)					
Queuing Penaity (ven)					
Network Summary	ý				
Network wide Queuing Per	nalty: 19				
Halos Envincentes					004 722 474
Hales Engineering 1220 North 500 West, Ste.					801.766.434 Page

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2025) Plus Project Morning Peak Hour Project #: UT20-1706

Intersection: Type: SR-210 & Wasatch Boulevard Signalized

Type:	Signalizeu									
Approach	Movement	Demand	Volume	Served	Delay/Ve	h (sec)				
мрргоасп	Movement	Volume	Avg	%	Avg	LOS				
	т	188	182	97	1.7	А				
NB										
	Subtotal	188	182	97	1.7	A				
2	Т	837	859	103	34.6	C A				
SB	R	444	447	101	9.1	A				
	Subtotal	1,281	1,306	102	25.9	С				
	L	924	922	100	33.7	С				
EB	R	66	68	103	18.2	В				
	Subtotal	990	990	100	32.6	С				
Total	-	2,459	2,478	101	26.8	с				

Intersection: Type: Wasatch Boulevard & La Caille Access Unsignalized

iype.		ensignalizea				
Approach		Demand	Volume	Served	Delay/Ve	h (sec)
мрргоасн	wovement	Volume	Avg	%	Avg	LOS
	τ	858	858	100	1.5	A
NB	R	12	12	98	1.0	А
	Subtotal	870	870	100	1.5	А
	L	17	14	84	8.7	A
SB	т	452	458	101	1.6	A
	Subtotal	469	472	101	1.8	А
	L	14	16	116	18.6	С
WB	R	22	22	100	10.0	А
	Subtotal	36	38	106	13.6	В
Total		1,375	1,380	100	1.9	A

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2025) Plus Project Morning Peak Hour

Project #: UT20-1706

Intersection:

SR-209 & SR-210

туре:		Signalized				
i anna a bh	Mauromant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	Т	463	469	101	15.9	В
EB	R	115	120	105	9.2	А
	Subtotal	578	589	102	14.5	В
12	L	87	89	103	9.5	A A
WB	т	93	90	97	2.6	А
	Subtotal	180	179	99	6.0	A
	L	111	110	99	44.9	D
NE	R	439	440	100	24.2	С
Subtota	Subtotal	550	550	100	28.3	С
Total		1,307	1,318	101	19.4	В

Intersection:

SR-210 & La Caille Lane

Туре:	1	Signalized				
5 mm ro o olo	Billourons and	Demand	Volume	e Served	Delay/Veh (sec)	
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	16	15	95	23.9	С
EB	R	10	12	117	2.5	А
	Subtotal	26	27	104	14.4	В
	L	34	36	105	7.6	A
NW	т	172	164	95	1.5	А
	Subtotal	206	200	97	2.6	А
	т	570	580	102	1.7	A
SE	R	15	14	95	0.5	А
	Subtotal	585	594	102	1.7	A
Total		817	821	100	2.3	А

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2025) Plus Project Morning Peak Hour

Project #: UT20-1706

Intersection:

P1 Out & SR-210

Туре:		Jnsignalized				
1 mm ma a ala	Movement	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	т	176	170	97	0.7	A
NW	R	12	10	82	0.4	А
	Subtotal	188	180	96	0.7	А
	τ	543	556	102	1.1	А
SE						
	Subtotal	543	556	102	1.1	A
	R	35	33	94	2.2	A
NE						
	Subtotal	35	33 94		2.2	А
Total		766	769	100	1.1	A

Intersection: SR-210 & P1 In

Туре:		Unsignalized				
Approach	Movement	Demand	Volume	e Served	Delay/Ve	h (sec)
Approach	wovement	Volume	Avg	%	Avg	LOS
	R	12	12	98	0.1	A
WB	Subtotal	12	12	100	0.1	A
A 11 A 2	т	174	168	96	0.4	A
NW						
	Subtotal	174	168	97	0.4	A
	Т	554	567	102	0.3	A A
SE	R	140	144	103	0.9	A
	Subtotal	694	711	102	0.4	А
Total		880	891	101	0.4	A

Project: Analysis Period: Time Period:

Sandy La Caille TS Future (2025) Plus Project Morning Peak Hour Project #: UT20-1706

Intersection:

P2 In & SR-210 & P2 Out

Туре:		Unsignalized									
		Demand	Volume	Served	Delay/Ve	h (sec)					
Approach	Movement	Volume	Avg	%	Avg	LOS					
	R	2	2	100	0.8	A					
WB											
	Subtotal	2	2	100	0.8	А					
	τ	186	180	97	0.1	А					
NW											
	Subtotal	186	180	97	0.1	A					
	T	683	701	103	1.9	А А					
SE	R	220	226	103	1.2	А					
	Subtotal	903	927	103	1.7	A					
Total		1,092	1,109	102	1.5	А					

Intersectio Type:		La Caille Lane & P6 Unsignalized								
Approach	Movement	Demand	Volume	e Served	Delay/Veh (sec)					
дриоцен	Movement	Volume	Avg	%	Avg	LOS				
	τ	12	12	104	0.1	Α				
NW	R	10	11	107	0.1	д А				
	Subtotal	22	23	105	0.1	А				
SE	Ţ	12	12	98	0.0	A				
	Subtotal	12	12	100	0.0	А				
Total		34	35	103	0.1	A				

Project: Analysis Period: Time Period:

Project #: UT20-1706

Intersection:

P5 & La Caille Lane

Sandy La Caille TS Future (2025) Plus Project Morning Peak Hour

Туре:		Jnsignalized				
Sec. Sec.	Diamana and	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	3	2	67	2.3	A
NW	T R	31	35	112	0.6	А
INVV	R	15	13	88	0.5	A A A
	Subtotal	49	50	102	0.6	А
	Т	12	12	98	0.0	А
SE						
	Subtotal	12	12	100	0.0	A
	R	4	4	100	2.7	А
NE						
	Subtotal	4	4	100	2.7	А
Total		65	66	101	0.6	A

Future (2025) Plus	S s Project							Morning Peak Hou 09/17/20
1: SR-210 & Wasa	atch Boul	evard	Perfor	mance	by mo	oveme	ent	
Movement	EBL	EBR	NBT	SBT	SBR	All		
Denied Delay (hr)	0.1	0.0	0.0	0.1	0.0	0.2		
Denied Del/Veh (s)	0.5	0.2	0.0	0.2	0.3	0.3 18.9		
Total Delay (hr) Total Del/Veh (s)	8.8 33.7	0.3	0.1	8.5 34.6	1.2 9.1	26.8		
Vehicles Entered	919	68	182	857	446	2472		
Vehicles Exited	922	68	182	859	447	2478		
Hourly Exit Rate	922	68	182	859	447	2478		
Input Volume	924 100	66	188 97	837	444 101	2459 101		
% of Volume	100	103	97	103	101	101		
2: Wasatch Boule	vard & La	Caille	e Acce	ss Per	formai	nce by	movement	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	All	
Denied Delay (hr)	0.0	0.0	0.2	0.0	0.0	0.0	0.2	
Denied Del/Veh (s)	0.1 0.1	0.1 0.1	0.7	0.7	0.1 0.0	0.0	0.5 0.8	
Total Delay (hr) Total Del/Veh (s)	18.6	10.0	1.5	0.0 1.0	8.7	1.6	1.9	
Vehicles Entered	15	21	859	12	14	458	1379	
Vehicles Exited	16	22	858	12	14	458	1380	
Hourly Exit Rate	16	22	858	12	14	458	1380	
Input Volume % of Volume	14 116	22 100	858 100	12 98	17 84	452 101	1375 100	
Movement Denied Delay (hr)	EBT 0.0	EBR 0.0	WBL 0.0	WBT 0.0	NEL 0.0	NER 0.1	All 0.1	
Denied Del/Veh (s) Total Delay (hr)	0.0 2.1	0.0	0.0	0.0	0.4 1.5	0.4 3.2	0.2 7.4	
Total Del/Veh (s)	15.9	9.2	9.5	2.6	44.9	24.2	19.4	
	470	119	89	90	110	438	1316	
Vehicles Entered		120	89	90	110	440	1318	
Vehicles Exited	469							
Vehicles Exited Hourly Exit Rate	469	120	89	90	110	440	1318	
Vehicles Exited		120 115 105	89 87 103	90 93 97	110 111 99	440 439 100	1318 1307 101	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	
Vehicles Exited Hourly Exit Rate Input Volume	469 463	115	87	93	111	439	1307	801.766.43
Vehicles Exited Hourly Exit Rate Input Volume % of Volume	469 463 101	115 105	87 103	93	111	439	1307	801.766.43 Page

Future (2025) Plus 4: SR-210 & La Ca		e Perfo	rmanc	e by n	novem	ent		09/17/2
Movement	EBL	EBR	SET	SER	NWL	NWT	All	
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Denied Del/Veh (s)	0.1	1.6	0.0	0.0	0.1	0.0	0.0	
Total Delay (hr)	0.1	0.0	0.3	0.0	0.1	0.1	0.5	
Total Del/Veh (s)	23.9	2.5	1.7	0.5	7.6	1.5	2.3	
Vehicles Entered	15	12	580	14	36	164	821	
Vehicles Exited	15	12	580	14	36	164	821	
Hourly Exit Rate	15	12	580	14	36	164	821	
Input Volume % of Volume	16 95	10 117	570 102	15 95	34 105	172 95	817 100	
5: P1 Out & SR-2*	10 Perfor	mance	by m	oveme	nt			
Movement	SET	NWT	NWR	NER	All			
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0			
Denied Del/Veh (s)	0.0	0.0	0.6	0.1	0.0			
Total Delay (hr)	0.2	0.0	0.0	0.0	0.2			
Total Del/Veh (s) Vehicles Entered	1.1 555	0.7 170	0.4 10	2.2 33	1.1 768			
Vehicles Exited	556	170	10	33	769			
Hourly Exit Rate	556	170	10	33	769			
Input Volume	543	176	12	35	766			
%of Volume	102	97	82	94	100			
6: SR-210 & P1 In	WBR	ance k SET	ser	NWT	I All			
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0			
Denied Del/Veh (s)	0.1	0.0	0.0	0.0	0.0			
Total Delay (hr)	0.0	0.0	0.0	0.0	0.1			
Total Del/Veh (s)	0.1	0.3	0.9	0.4	0.4			
Vehicles Entered	12	567	144	168	891			
Vehicles Exited	12 12	567 567	144 144	168 168	891 891			
Hourly Exit Rate	12	554	144	174	880			
% of Volume	98	102	103	96	101			
Hales Engineering								801.766.4

	is Project						09/17/20
7: P2 In & SR-210	0 & P2 Ou	t Perf	orman	ce by i	nover	nent	
Movement	WBR	SET	SER	NWT	All		
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0		
Denied DeWeh (s)	0.1	0.0	0.0	0.0	0.0		
Total Delay (hr)	0.0	0.4	0.1	0.0	0.5		
Total Del/Veh (s) Vehicles Entered	0.8	1.9 702	1.2 226	0.1 181	1.5 1111		
Vehicles Exited	2	702	226	180	1109		
Hourly Exit Rate	2	701	226	180	1109		
Input Volume	2	683	220	186	1092		
% of Volume	100	103	103	97	102		
8: La Caille Lane	& P6 Perf	ormar	nce by	move	ment		
Movement	SET	NWT	NWR	All			
Denied Delay (hr)	0.0	0.0	0.0	0.0			
Denied Del/Veh (s)	0.0	0.0	0.0	0.0			
Total Delay (hr)	0.0	0.0	0.0	0.0			
Total Del/Veh (s)	0.0	0.1	0.1	0.1			
Vehicles Entered	12	12	11	35			
Vehicles Exited	12	12	11	35			
Hourly Exit Rate	12 12	12 12	11 10	35 34			
% of Volume	98	104	107	103			
Movement	SET	NWL	NWT	NWR	NER	All	
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	
Denied Delay (hr) Denied Del/Veh (s)	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.1	0.0 0.0	
Denied Delay (hr) Denied Del/Veh (s) Total Delay (hr)	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 <mark>0.1</mark> 0.0	0.0 0.0 0.0	
Denied Delay (hr) Denied Del/Veh (s) Total Delay (hr) Total Del/Veh (s)	0.0 0.0 0.0 0.0	0.0 0.0 0.0 2.3	0.0 0.0 0.0 0.6	0.0 0.0 0.0 0.5	0.0 0.1 0.0 2.7	0.0 0.0 0.0 0.6	
Denied Delay (hr) Denied Del/Veh (s) Total Delay (hr) Total Del/Veh (s) Vehicles Entered	0.0 0.0 0.0 0.0 12	0.0 0.0 0.0 2.3 2	0.0 0.0 0.0 0.6 35	0.0 0.0 0.0 0.5 13	0.0 0.1 0.0 2.7 4	0.0 0.0 0.0 0.6 66	
Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total DelVeh (s) Vehicles Entered Vehicles Exited	0.0 0.0 0.0 12 12	0.0 0.0 0.0 2.3 2 2	0.0 0.0 0.0 0.6 35 35	0.0 0.0 0.0 0.5 13 13	0.0 0.1 0.0 2.7	0.0 0.0 0.6 66 66	
Denied Delay (hr) Denied Del/Veh (s) Total Delay (hr) Total Del/Veh (s) Vehicles Entered	0.0 0.0 0.0 0.0 12	0.0 0.0 0.0 2.3 2	0.0 0.0 0.0 0.6 35	0.0 0.0 0.0 0.5 13	0.0 0.1 0.0 2.7 4 4	0.0 0.0 0.0 0.6 66	
Denied Delay (hr) Denied DelvYeh (s) Total Delay (hr) Total DeVYeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate	0.0 0.0 0.0 12 12 12	0.0 0.0 2.3 2 2 2 2	0.0 0.0 0.6 35 35 35 35	0.0 0.0 0.5 13 13 13	0.0 0.1 0.0 2.7 4 4 4	0.0 0.0 0.6 66 66 66 66	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total DeWeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeVVeh (s) Total Delay (hr) Total DeVVeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume	0.0 0.0 0.0 12 12 12 12 12	0.0 0.0 2.3 2 2 2 2 3	0.0 0.0 0.6 35 35 35 35 35 31	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	
Denied Delay (hr) Denied DeVVeh (s) Total Delay (hr) Total DeVVeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume	0.0 0.0 0.0 12 12 12 12 98	0.0 0.0 2.3 2 2 2 2 2 3 67	0.0 0.0 0.6 35 35 35 31 112	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	801.766.43
Denied Delay (hr) Denied DeVVeh (s) Total Delay (hr) Total DeVVeh (s) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume % of Volume	0.0 0.0 0.0 12 12 12 12 98	0.0 0.0 2.3 2 2 2 2 2 3 67	0.0 0.0 0.6 35 35 35 31 112	0.0 0.0 0.5 13 13 13 13 13	0.0 0.1 0.0 2.7 4 4 4 4 4	0.0 0.0 0.6 66 66 66 66 65	801.766.43 Pag

Sandy La Caille TS Future (2025) Plus Pro	ject	Morning Peak Ho 09/17/20
Total Network Perform		
Denied Delay (hr)	0.5	
Denied Del/Veh (s)	0.6	
Total Delay (hr)	38.9	
Total Del/Veh (s)	41.4	
Vehicles Entered	3166	
Vehicles Exited	3173	
Hourly Exit Rate	3173	
Input Volume % of Volume	16180 20	
Hales Engineering		801.766.43

Future (2025) Plus	S Project				Morning Peak Hour 09/17/2020
Intersection: 1: SR	-210 & \	Vasato	ch Bou	ilevard	
Movement	EB	EB	SB	SB	
Directions Served	L	R	Т	T	
Maximum Queue (ft)	350	743	334	338	
Average Queue (ft)	307	230	177	187	
95th Queue (ft) Link Distance (ft)	402	661 2832	295 5003	307 5003	
Upstream Blk Time (%)		2032	5005	5005	
Queuing Penalty (veh)					
Storage Bay Dist (ft)	250				
Storage Blk Time (%)	20				
Queuing Penalty (veh)	13				
Intersection: 2: Wa	isatch B	ouleva	rd & L	a Caille	e Access
Movement	WB	NB	SB		
Directions Served	LR	TR	L		
Maximum Queue (ft)	48	2	40		
Average Queue (ft)	14	0	9		
95th Queue (ft)	34	2	34		
Link Distance (ft) Upstream Blk Time (%)	634	1019			
Queuing Penalty (veh)					
Storage Bay Dist (ft)			120		
Storage Blk Time (%)					
Queuing Penalty (veh)					
ducung renary (very					
	200 & 9	SR-210	n		
Intersection: 3: SR					
Intersection: 3: SR	EB	WB	WB	NE	
Intersection: 3: SR Movement Directions Served	EB TR	WB	WB T	Ŀ	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft)	EB TR 256	WB L 77	WB T 46	L 148	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft)	EB TR 256 105	WB	WB T 46 11	Ŀ	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft)	EB TR 256	WB L 77 35	WB T 46	L 148 65	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB TR 256 105 203	WB L 77 35	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Upstream Blk Time (%) Queuing Penalty (veh)	EB TR 256 105 203	WB L 77 35 62	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	EB TR 256 105 203	WB L 77 35 62 125	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	EB TR 256 105 203	WB L 77 35 62 125	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	EB TR 256 105 203	WB L 77 35 62 125 0	WB T 46 11 37	L 148 65 114	801 766 4343
Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB TR 256 105 203 2647	WB L 77 35 62 125 0 0	WB T 46 11 37 2117	L 148 65 114	801.766.4343 Page 5

1 ataro (2020) 1 lao	Project						WOIT	ning Peak Hour 09/17/2020
Intersection: 4: SR-	210 & L	a Caill	e Lane)				
Movement	EB	EB	SE	SE	NW	NW		
Directions Served	L	R	Т	TR	L	т		
Maximum Queue (ft)	42	25	108	38	70	59		
Average Queue (ft)	11	7 25	22 75	3	15 46	7		
95th Queue (ft) Link Distance (ft)	35 440	25	274	21 274	40	34 840		
Upstream Blk Time (%)	110		274	214		040		
Queuing Penalty (veh)								
Storage Bay Dist (ft)		200			200			5
Storage Blk Time (%)								
Queuing Penalty (veh)								
Intersection: 5: P1 (Out & SP	R-210						
100 A.								
Movement Directions Served	NE R							
Maximum Queue (ft)	42							
Average Queue (ft)	17							
95th Queue (ft)	39							
Link Distance (ft)	101							
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft) Storage Blk Time (%)								
Queuing Penalty (veh)								
Intersection: 6: SR-	210 8 0	115						
Intersection. 0. OR-	210 & F	3 313						
Movement								
Directions Served Maximum Queue (ft)								
Average Queue (ft)								
95th Queue (ft)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
Sth Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)								
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)								801.766.4343
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	102, Lehi, Ut	ah 84043						801.766.4343 Page 6

Future (2025) Plus	S s Project		Morning Peak Hour 09/17/2020
		\+	
Intersection. 7. P2	2 In & SR-210 & P2 C	Jut	
Movement			
Directions Served			
Maximum Queue (ft)			
Average Queue (ft)			
95th Queue (ft) Link Distance (ft)			
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Intersection: 8: La	Caille Lane & P6		
Movement			
Directions Served			
Maximum Queue (ft)			
Average Queue (ft)			
95th Queue (ft)			
Link Distance (ft)			
Upstream Blk Time (%) Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Intersection: 9: P5	& La Caille Lane		
Movement	NE		
Directions Served Maximum Queue (ft)	LTR		
	28 4		
Average Queue (ft)	20		
Average Queue (ft) 95th Queue (ft)	20 365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft)	20 365		
Average Queue (ft) 95th Queue (ft)			
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)			
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)			
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)			
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh) Network Summary	365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh) Network Summary	365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh) Network Summary	365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh) Network Summary	365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh) Network Summary	365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh)	365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh) Network Summary	365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh) Network Summary	365		
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bik Time (%) Queuing Penalty (veh) Network Summary Network wide Queuing Per	365		001 766 4242
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh) Network Summary Network Wide Queuing Per Hales Engineering	365 / naity: 13		801.766.4343 Pane 7
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bik Time (%) Queuing Penalty (veh) Network Summary Network wide Queuing Per	365 / naity: 13		801.766.4343 Page 7

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2050) Background Morning Peak Hour Project #: UT20-1706

Intersection:

SR-210 & Wasatch Boulevard

туре:	;	Signalized				
f an a set	Bdou one ont	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	10	10	98	67.1	E
NB	т	270	267	99	17.6	В
	Subtotal	280	277	99	19.4	В
2	Т	1,110	1,120	101	36.8	D B
SB	R	580	581	100	12.7	В
	Subtotal	1,690	1,701	101	28.6	С
	L	1,195	1,195	100	28.6	C A
EB	R	20	20	101	7.8	A
	Subtotal	1,215	1,215	100	28.3	С
Total		3,185	3,193	100	27.7	С

Intersection: Type: Wasatch Boulevard & La Caille Access Unsignalized

19001		energnanzea				
0 nn ra a ala	Movement	Demand	Volume	Served	Delay/Ve	h (sec)
чрргоасн	wovement	Volume	Avg	%	Avg	LOS
	Т	1,100	1,104	100	0.7	A
NB	R	10	9	88	0.5	А
	Subtotal	1,110	1,113	100	0.7	А
	L	10	9	88	9.7	A
SB	т	600	602	100	1.3	А
	Subtotal	610	611	100	1.4	А
	L	10	9	88	24.8	С
WB	R	10	10	98	8.3	А
	Subtotal	20	19	95	16.1	С
Total		1,741	1,743	100	1.1	A

Sept 2022

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2050) Background Morning Peak Hour

Project #: UT20-1706

Intersection:

SR-209 & SR-210

Type:		signalized				
1 mm ma a ala	Mauromant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	165	164	100	39.3	D
EB	т	860	859	100	45.6	D
EB	R	105	109	104	37.5	D
	Subtotal	1,130	1,132	100	43.9	D
2	L	130	120	92	39.2	D
WB	т	150	145	97	5.4	А
VVD	R	15	17	115	2.7	A B
	Subtotal	295	282	96	19.6	В
	L	95	96	101	74.8	E
NE	Т	40	40	101	81.2	E F C
INE	R	695	700	101	31.3	С
	Subtotal	830	836	101	38.7	D
	L	15	15	102	46.6	D
~~	Т	15	15	102	49.9	D
SW	R	35	34	96	15.2	В
	Subtotal	65	64	98	30.7	С
Total		2,320	2,314	100	38.8	D

Intersection:

Type:		Unsignalized				
		Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	Т	1,125	1,135	101	2.2	A
EB	R	5	6	114	0.9	А
	Subtotal	1,130	1,141	101	2.2	A
	L	5	5	95	8.6	A
WB	т	276	274	99	3.1	А
	Subtotal	281	279	99	3.2	A
0	L	5 5	4	76	18.9	С
NE	R	5	5	95	9.4	А
	Subtotal	10	9	90	13.6	В
Total		1,422	1,429	100	2.4	А

Denied Delay (hr) 0.0	1. 017210 4 1146	atch Boul	evard	Perfor	mance	by mo	veme	nt					
Denied DelvČeh (s) 0.1 0.0 0.2 0.1 0.0 0.2 0.2 Total DelvČeh (s) 266 7.8 67.1 17.6 36.8 12.7 27.7 Vehicles Exited 1195 20 11 266 120 581 3196 Vehicles Exited 1195 20 10 267 1120 581 3193 Houry Exit Rate 1195 20 10 267 1120 581 3193 Houry Exit Rate 1195 20 10 270 1110 580 3185 %of Valume 100 101 98 99 101 100 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement 77.1 3 1.1 Vehicles Exited 9 10 100 0.0 0.1 1.1 77.4 Vehicles Exited 9 10 1104 9 9 602 17.43 Ioput Vehicly	Movement	EBL	EBR	NBL	NBT	SBT	SBR	All					
Total Delay (fr) 9.7 0.0 0.2 1.3 11.8 2.1 25.1 Total Delay (fr) 28.6 7.8 67.1 17.6 36.6 12.7 27.7 Vehicles Entered 1197 20 11 26.6 11.2 581 3193 Houry Exit Rate 1195 20 10 267 11/2 581 3193 Houry Exit Rate 1195 20 10 27.0 1110 580 3185 Set S													
Tetal Deriven (s) 28.6 7.8 67.1 17.6 36.8 12.7 27.7 Vehicles Entered 1197 20 11 266 1121 581 3196 Vehicles Entered 1195 20 10 287 1120 581 3193 Hourly Exit Rate 1195 20 10 277 1110 580 3185 %of Volume 1195 20 10 270 1110 580 3185 %of Volume 100 101 98 99 101 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement WBR NBT NBR SBT All Denied Delay (hr) 0.0 0.0 0.0 0.1 0.0 0.1 100 100 100 100 10 110 110 110 100 110<													
Vehicles Entered 1197 20 11 266 1121 581 3196 Vehicles Exited 1195 20 10 267 1120 581 3193 Input Volume 1195 20 10 277 1110 580 3185 %of Volume 100 101 98 99 101 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement WBR NBT NBR SBL SBT All Denied Delv(hr) 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 100 1100 100 1101 100 1100 100 1100 100 1100 100 1100 1100 100 1110 1111 Vehicles Entered 9 100 1103 9 602 1742 Vehicles Entered 9 100 1104 9 9 602 1743 Input Volume 100 100 100 100 <td></td>													
Vehicles Exited 1195 20 10 267 1120 581 3193 Houry Exit Rate 1195 20 10 270 1110 580 3193 Yourne 1100 100 100 20 10 270 1110 580 3185 % of Volume 100 101 98 99 101 100 100 2: Wassatch Boulevard & La Caille Access Performance by movement Movement WBR NBT NBR SBL SBT All Denied Delay (hr) 0.0 0.0 0.1 0.0 0.1 Total Delay (hr) 0.0 0.0 0.0 0.1 Total Delay (hr) 10 0.0 0.0 0.0 10 10 1104 9 9 602 1743 Hourly Exit Rate 9 10 1104 9 9 602 1743 Hourly Exit Rate 9 10 1100 10 600 1741 SWT SWT SWT SWT SWT													
Hourly Exit Rate 1195 20 10 267 1120 581 3193 Input Volume 1195 20 10 270 1110 580 3185 \$ of Volume 100 101 98 99 101 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Advement WEL WBR NBT NBR SEL SET All Denied Delv(hr) 0.0 0.0 0.1 0.0 0.0 0.1 0.1 Denied Delv(hr) 0.1 0.2 0.2 0.3 0.1 0.0 0.1 Total Delv(hr) 0.1 0.0 0.2 0.0 0.0 0.2 0.6 Total Delv(hr) 0.1 0.0 0.7 0.0 0.0 0.1 1. Vehicles Entered 9 10 1104 9 9 802 1743 Hourly Exit Rate 9 10 1104 9 9 802 1743 Hourly Exit Rate 9 10 1104 9 9 802 1743 Hourly Exit Rate 9 10 1104 9 9 802 1743 Input Volume 10 10 1100 10 10 88 88 100 100 3: SR-209 & SR-210 Performance by movement Movement EBL EFT EBR WBL WBT WBR NEL NET NER SWL SWT SW Denied Delv(hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0			and the second se		1.000								
Input Volume 1195 20 10 270 1110 580 3185 %of Volume 100 101 99 99 101 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Imput Volume NBR SBL SBT All Deried Delay (hr) 0.0 0.0 0.1 0.0 0.1 Imput Volume													
%of Volume 100 101 98 99 101 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement NBL NBR SBL SBT All Denied Delay (h) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 Denied Delay (h) 0.1 0.2 0.2 0.3 0.1 0.0 0.1 0.1 Total Delay (h) 0.1 0.2 0.2 0.0 0.2 0.6 1.1 1.1 Vehicles Entered 9 10 1103 9 9 602 1743 1.1 1.1 Vehicles Exited 9 10 1104 9 9 602 1743 1.1 1.1 Vehicles Exited 9 10 1104 9 9 602 1743 1.1 1.2<			(1000) (1000)	101020				442312420020					
Movement WBL WBR NBT NBR SBL SBT All Denied Del/Veh (s) 0.1 0.0 0.1 0.0 0.1 0.0 0.1 Total Del/Veh (s) 0.1 0.2 0.2 0.3 0.1 0.0 0.1 Total Del/Veh (s) 24.8 8.3 0.7 0.5 9.7 1.3 1.1 Vehicles Entered 9 10 1103 9 9 602 1742 Vehicles Extred 9 10 1104 9 9 602 1743 Input Volume 10 10 100 600 1741 % % %of Volume 88 98 100 88 88 100 0.0													
Denied Delay (hr) 0.0 0.0 0.1 0.0 0.0 0.1 Denied DelVeh (s) 0.1 0.2 0.3 0.1 0.0 0.1 Total Delay (hr) 0.1 0.0 0.2 0.6 Total Delveh (s) 24.8 8.3 0.7 0.5 9.7 1.3 1.1 Vehicles Entered 9 10 1103 9 9 602 1743 Hourly ExitRate 9 10 1104 9 9 602 1743 Input Volume 10 10 10 10 600 1741 %of Volume 88 98 100 88 88 100 100 3: SR-209 & SR-210 Performance by movement Movement EBL EBT EBR WBL WBT WBR NEL NET SW Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2: Wasatch Boule	evard & La		Acce			ce by		nent				
Denied DelVeh (s) 0.1 0.2 0.2 0.3 0.1 0.0 0.1 Total Delvy (hr) 0.1 0.0 0.2 0.0 0.0 0.2 0.6 Total DelVy (s) 24.8 8.3 0.7 0.5 9.7 1.3 1.1 Vehicles Exited 9 10 1103 9 9 602 1742 Vehicles Exited 9 10 1104 9 9 602 1743 Hourly Exit Rate 9 10 1104 9 9 602 1743 Input Volume 10 10 10 10 600 1741 %of Volume 88 98 100 88 88 100 10 3: SR-209 & SR-210 Performance by movement Movement EBL EBT EBW WBL WBT NEN NEN NEN SWL SWL SWT SW Denied Delvy (hr) 0.0 0.0 0.0 0.0 0.0													
Total Delay (hr) 0.1 0.0 0.2 0.0 0.2 0.6 Total DeVVeh (s) 24.8 8.3 0.7 0.5 9.7 1.3 1.1 Vehicles Exited 9 10 1104 9 9 602 1743 Hourly Exit Rate 9 10 1104 9 9 602 1743 Input Volume 10 10 100 10 10 600 1741 % of Volume 88 98 100 88 88 100 100 3: SR-209 & SR-210 Performance by movement WBR NEL NET NER SWL SWT SW Movement EBL EBT EBR WBL WBT WBR NEL NET NER SWL SWT SW Openied Delvy(hr) 0.0 <td></td>													
Total DeVVeh (s) 24.8 8.3 0.7 0.5 9.7 1.3 1.1 Vehicles Entered 9 10 1103 9 9 602 1742 Vehicles Exited 9 10 1104 9 9 602 1743 Hourly ExitRate 9 10 1104 9 9 602 1743 Input Volume 10 10 100 10 600 1741 %of Volume 88 98 100 88 88 100 100 3: SR-209 & SR-210 Performance by movement Movement NET NET NER SWL SWT SW Denied Delay (hr) 0.0 0.													
Vehicles Entered 9 10 1103 9 9 602 1742 Vehicles Exited 9 10 1104 9 9 602 1743 Hourly Exit Rate 9 10 1104 9 9 602 1743 Input Volume 10 1100 10 10 600 1741 %of Volume 88 98 100 88 88 100 100 3: SR-209 & SR-210 Performance by movement SWT SW Movement EBL EBT EBR WBL WBT WBR NEL NET NER SW													
Vehicles Exited 9 10 1104 9 9 602 1743 Hourly Exit Rate 9 10 1104 9 9 602 1743 Input Volume 10 10 10 10 10 600 1741 % of Volume 88 98 100 88 88 100 100 3: SR-209 & SR-210 Performance by movement WBT WBR NEL NET NER SWL SWT SW Movement EBL EBT EBR WBL WBT WBR NEL NET NER SWL SWT SW Denied Delay (hr) 0.0 <													
Hourly Exit Rate 9 10 1104 9 9 602 1743 Input Volume 10 10 100 10 10 600 1741 % of Volume 88 98 100 88 88 100 100 3: SR-209 & SR-210 Performance by movement EBT EBR WBL WBT WBR NEL NET NER SW/L SW/L SW/T SW Denied Delay (hr) 0.0<													
Input Volume 10 10 10 10 10 600 1741 % of Volume 88 98 100 88 88 100 100 3: SR-209 & SR-210 Performance by movement Image: Sign of Volume Image: Sign of Volume SWT	Statistical and subject a speed to a solution												
%of Volume 88 98 100 88 88 100 100 3: SR-209 & SR-210 Performance by movement Movement EBL EBT EBR WBL WBR NEL NET NER SWL SWT SW Denied Delay (hr) 0.0	A service of the second second second second second		2000				10000						
Movement EBL EBT EBR WBL WBT WBR NEL NET NER SW/L													
Denied DeVVen (s) 0.0 0.0 0.0 0.0 0.0 0.7 0.8 0.8 0.2 0.1 0.0 Total Delay (hr) 1.8 11.2 1.2 1.3 0.2 0.0 2.2 1.0 6.6 0.2 0.2 0.0 Total Delay (hr) 1.8 11.2 1.2 1.3 0.2 0.0 2.2 1.0 6.6 0.2 0.2 0.0 Total DelvYeh (s) 39.3 45.6 37.5 39.2 5.4 2.7 74.8 81.2 31.3 46.6 49.9 15 Vehicles Exited 164 859 109 120 145 17 96 40 700 15 15 3 Houtry Exit Rate 164 859 109 120 145 17 96 40 700 15 15 3 3 60 100 102 145 17 96 40 700 15 15 3					- Contraction of the second				100000	1.5			SW
Total Delay (hr) 1.8 11.2 1.2 1.3 0.2 0.0 2.2 1.0 6.6 0.2 0.2 0.0 Total DelV/eh (s) 39.3 45.6 37.5 39.2 5.4 2.7 74.8 81.2 31.3 46.6 49.9 15 Vehicles Entered 165 864 110 120 145 17 98 39 704 15 15 3 Vehicles Exited 164 859 109 120 145 17 96 40 700 15 15 3 Input Volume 165 860 105 130 150 15 95 40 695 15 15 3 % of Volume 100 100 104 92 97 115 101 101 102 102 95 3: SR-209 & SR-210 Performance by movement 39 30													
Total DeVven (s) 39.3 45.6 37.5 39.2 5.4 2.7 74.8 81.2 31.3 46.6 49.9 15 Vehicles Entered 165 864 110 120 145 17 98 39 704 15 15 3 Vehicles Exited 164 859 109 120 145 17 96 40 700 15 15 3 Moutly Exit Rate 164 859 109 120 145 17 96 40 700 15 15 3 Input Volume 165 860 105 130 150 15 95 40 695 15 15 3 % of Volume 100 100 104 92 97 115 101 101 102 102 95 3: SR-209 & SR-210 Performance by movement													
Vehicles Entered 165 864 110 120 145 17 98 39 704 15 16 17 96 40 700 15 15 15 15 15 15 15 15 15 15 15 16 101 101 101 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102 102<													
Hourly Exit Rate 164 859 109 120 145 17 96 40 700 15 15 33 Input Volume 165 860 105 130 150 15 95 40 695 15 15 35 % of Volume 100 100 104 92 97 115 101 101 102 102 95 3: SR-209 & SR-210 Performance by movement 101 101 102 102 95 3: SR-209 & SR-210 Performance by movement 142 17 96 40 695 15 15 35 35 150 15 15 35 35 142 101 101 102 102 92 97 115 101 101 102 102 102 102 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></td<>													3
Input Volume 165 860 105 130 150 15 95 40 695 15 15 5 % of Volume 100 100 104 92 97 115 101 101 102 102 95 3: SR-209 & SR-210 Performance by movement Movement All Image: Second Se	Vehicles Exited	164	859	109	120	145	17	96	40	700	15	15	3
%of Volume 100 100 104 92 97 115 101 101 101 102 102 102 103 103 102 102 102 103 103 102 102 102 103 102 102 102 103 103 102 102 102 103 103 104 101 101 102 102 103 103 104 101 101 102 102 103 103 104 104 104 102 102 103 103 104 104 101 101 101 101 102 102 103 10		164	859				17	96		700			3
All Movement All Denied Delay (hr) 0.2 Denied Delay (hr) 26.1 Total Delay (hr) 26.1 Total Delv/eh (s) 38.8 Vehicles Entered 2326 Vehicles Exited 2314 Hourty Exit Rate 2314 Input Volume 2320	Hourly Exit Rate												3
Movement All Denied Delay (hr) 0.2 Denied Delay (hr) 0.3 Total Delay (hr) 26.1 Total Delv/eh (s) 38.8 Vehicles Entered 2326 Vehicles Exited 2314 Hourty Exit Rate 2314 Input Volume 2320	Input Volume	100	100	104	92	97	115	101	101	101	102	102	ç
Denied Delay (hr) 0.2 Denied DelV(h (s) 0.3 Total Delay (hr) 26.1 Total DelV(h (s) 38.8 Vehicles Entered 2326 Vehicles Exited 2314 Hourly Exit Rate 2314 Input Volume 2320	Input Volume												
Denied Del/Veh (s) 0.3 Total Delay (hr) 26.1 Total Del/Veh (s) 38.8 Vehicles Entered 2326 Vehicles Exited 2314 Hourty Exit Rate 2314 Input Volume 2320	Input Volume %of Volume <u>3: SR-209 & SR-</u>	210 Perfo	rmanc	e by m	oveme	ent					_		
Total Delay (hr) 26.1 Total DelVVeh (s) 38.8 Vehicles Entered 2326 Vehicles Exited 2314 Hourly Exit Rate 2314 Input Volume 2320	Input Volume %of Volume 3: SR-209 & SR-: Movement	210 Perfo All	rmance	e by m	oveme	ent							
Total De/Veh (s) 38.8 Vehicles Entered 2326 Vehicles Exited 2314 Hourly Exit Rate 2314 Input Volume 2320	Input Volume % of Volume 3: SR-209 & SR-: Movement Denied Delay (hr)	210 Perfo All 0.2	rmanco	e by m	oveme	ent							
Vehicles Entered 2326 Vehicles Exited 2314 Hourly Exit Rate 2314 Input Volume 2320	Input Volume %of Volume 3: SR-209 & SR- Movement Denied Delay (hr) Denied DeWeh (s)	210 Perfo All 0.2 0.3	rmanco	e by m	oveme	ent							
Vehicles Exited 2314 Hourly Exit Rate 2314 Input Volume 2320	Input Volume %of Volume 3: SR-209 & SR- Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr)	210 Perfo All 0.2 0.3 26.1	rmanco	e by m	oveme	ent							
Hourly Exit Rate 2314 Input Volume 2320	Input Volume %of Volume 3: SR-209 & SR- Movement Denied Delay (hr) Denied DeWeh (s) Total Delay (hr) Total Delay (hr)	210 Perfo All 0.2 0.3 26.1 38.8	rmanco	e by m	oveme	ent							
	Input Volume %of Volume 3: SR-209 & SR- Movement Denied Delay (hr) Denied DelVeh (s) Total Delveh (s) Vehicles Entered	210 Perfo All 0.2 0.3 26.1 38.8 2326	rmanco	e by m	oveme	ent							
% of Volume 100	Input Volume %of Volume 3: SR-209 & SR- Movement Denied Delay (hr) Denied Del/Veh (s) Total Delay (hr) Total Del/Veh (s) Vehicles Entered Vehicles Exited	210 Perfo All 0.2 0.3 26.1 38.8 2326 2314 2314	rmanco	e by m	oveme	ent							
	Input Volume %of Volume 3: SR-209 & SR-: Denied Delay (hr) Denied Delv(hr) Donied Delv(hr) Total Delay (hr) Total Delv(hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	210 Perfo All 0.2 0.3 26.1 38.8 2326 2314 2314 2314 2320	rmanco	e by m	oveme	ent							
Hales Engineering 801.766.434	Input Volume %of Volume 3: SR-209 & SR-: Denied Delay (hr) Denied Delv(hr) Donied Delv(hr) Total Delay (hr) Total Delv(hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	210 Perfo All 0.2 0.3 26.1 38.8 2326 2314 2314 2314 2320	rmanc	e by m	oveme	ent							

Future (2050) Ba	FS ckground							Morning Peak Hou 09/04/202
4: Project Access	& SR-210) Perfo	ormand	e by n	novem	ent		
Movement	EBT	EBR	WBL	WBT	NEL	NER	All	
Denied Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.1	0.1	0.0	
Total Delay (hr)	0.7	0.0	0.0	0.2	0.0	0.0	1.0	
Total Del/Veh (s)	2.2	0.9	8.6	3.1	18.9	9.4	2.4	
Vehicles Entered	1134	6	5	271	4	5	1425	
Vehicles Exited	1135	6	5	274	4	5	1429	
Hourly Exit Rate	1135	6	5	274	4	5	1429	
Input Volume	1125	5	5	276	5	5	1422	
% of Volume	101	114	95	99	76	95	100	
Total Network Pe	formance							
Denied Delay (hr)			0.5					
Denied Del/Veh (s)			0.4					
Total Delay (hr)			75.2					
Total Del/Veh (s)			60.7					
Vehicles Entered			4155					
Vehicles Exited			4133					
Hourly Exit Rate			4133					
Input Volume			19200					
% of Volume			22					

Intersection: 1: SR	ground) -210 & ۱	Nasato	h Bou	levard				09/04/2020
Movement	EB	EB	EB	NB	NB	SB	SB	
Directions Served	L	L	R		T	T	T	
Maximum Queue (ft)	333	364	42	55	202	451	415	
Average Queue (ft)	210	228	7	13	90	271	216	
95th Queue (ft)	306	322	29	41	172	407	363	
Link Distance (ft)		2821	2821		1661	4997	4997	
Upstream Blk Time (%)								
Queuing Penalty (veh)	250			100				
Storage Bay Dist (ft) Storage Blk Time (%)	250	5		100	7			
Queuing Penalty (veh)	12	29			1			
Intersection: 2: Wa	satch B	ouleva	rd & L	a Caill	e Acce	SS		
Movement	WB	SB						
Directions Served	LR	L						
Maximum Queue (ft)	41	33						
Average Queue (ft)	8	7 27						
95th Queue (ft) Link Distance (ft)	26 614	21						
Upstream Blk Time (%)	014							
Queuing Penalty (veh)								
Storage Bay Dist (ft)		120						
Storage Blk Time (%) Queuing Penalty (veh)								
Movement	EB	EB	WB	WB	NE	NE	SW	
Directions Served	L	TR	L	TR	LT	R	LTR	
	200	1061 446	158 60	144 31	247 100	30	105 30	
Maximum Queue (ft)	402	440	118	90	195	1 31	71	
Maximum Queue (ft) Average Queue (ft)	102 237	1008			13898	01	233	
Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)	102 237	1008 3539	110	2083				
Maximum Queue (ft) Average Queue (ft)		1008 3539	110	2083	10000			
Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)	237			2083	10000			
Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	237	3539	125			200		
Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)	237			2083 0 0	1 7	200		
Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	237 100 1	3539 27	125 2	0	1	200		

Future (2050) Bac	kyrounu		09/04/2020
Intersection: 4: Pro	oject Acc	ess & SR-	10
Movement	WB	NE	
Directions Served	LT	LR	
Maximum Queue (ft)	60	25	
Average Queue (ft)	5	5	
95th Queue (ft)	32	20	
Link Distance (ft)	3539	562	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Intersection: 10: B	end		
Movement	EB	EB	
Directions Served	Т		
Maximum Queue (ft)	459	82	
Average Queue (ft)	39	3	
95th Queue (ft)	286	70	
Link Distance (ft)	2083	2083	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Network Summary			
Network wide Queuing Per			
internet and a dealing i of			
			801.766.4343
Hales Engineering 1220 North 500 West, Ste.			Page 4

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2050) Plus Project Morning Peak Hour Project #: UT20-1706

Intersection:

SR-210 & Wasatch Boulevard

Type:		Signalized				
0 mm reach	Diamana ant	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	10	11	107	46.9	D
NB	т	237	234	99	15.7	В
	Subtotal	247	245	99	17.1	В
1	Т	1,132	1,126	99	27.0	C B
SB	R	594	597	100	12.4	В
	Subtotal	1,726	1,723	100	21.9	С
	L	1,241	1,258	101	30.1	С В
EB	R	88	89	101	11.5	В
	Subtotal	1,329	1,347	101	28.9	С
Total		3,302	3,315	100	24.4	C

Intersection: Type: Wasatch Boulevard & La Caille Access Unsignalized

1300.		enorginalizou				
1 nn ra a ab	Movement	Demand	Volume	Served	Delay/Ve	h (sec)
мрргоасн	wovement	Volume	Avg	%	Avg	LOS
	Т	1,197	1,215	101	0.4	A
NB	R	17	18	107	0.1	А
	Subtotal	1,214	1,233	102	0.4	A
	L	22	23	105	13.1	В
SB	т	602	605	101	1.2	А
	Subtotal	624	628	101	1.6	А
	L	19	17	91	21.7	С
WB	R	27	29	107	8.1	А
	Subtotal	46	46	100	13.1	В
Total		1,884	1,907	101	1.1	A

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2050) Plus Project Morning Peak Hour Project #: UT20-1706

Intersection:

SR-209 & SR-210

Туре:		Signalized				
f an a set	Bdou one ont	Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	т	628	626	100	21.3	С
EB	R	153	153	100	13.7	В
	Subtotal	781	779	100	19.8	В
2	L	120	121	101	15.6	B A
WВ	τ	126	128	101	3.3	А
	Subtotal	246	249	101	9.3	A
	L	141	142	101	62.8	E C
NE	R	593	595	100	29.3	С
	Subtotal	734	737	100	35.8	D
Total		1,761	1,765	100	25.3	С

Intersection:

SR-210 & La Caille Lane

Туре:		Signalized				
ð maria a cla	Bauanant	Demand	Volume	Served	Delay/Ve	eh (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	L	16	15	95	38.0	D
EB	R	10	11	107	2.7	А
	Subtotal	26	26	100	23.1	С
	L	39	41	106	10.1	В
NW	т	230	233	101	1.8	А
	Subtotal	269	274	102	3.0	А
	Т	772	773	100	1.8	А
SE	R	15	15	102	0.5	А
	Subtotal	787	788	100	1.8	A
Total		1,082	1,088	101	2.6	А

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2050) Plus Project Morning Peak Hour

Project #: UT20-1706

Intersection:

P1 Out & SR-210

туре:		Unsignalized				
		Demand	Volume	Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	т	233	232	100	0.8	A
NW	R	12	15	122	0.4	А
	Subtotal	245	247	101	0.8	А
1	τ	736	738	100	1.3	А
SE						
	Subtotal	736	738	100	1.3	А
	R	43	41	96	2.3	А
NE						
	Subtotal	43	41	95	2.3	А
			1 883			
Total		1,024	1,026	100	1.2	А

Intersection: P1 In & SR-210

Туре:		Unsignalized				
Annroach	Movement	Demand	Volume	Served	Delay/Ve	eh (sec)
Approach	wovement	Volume	Avg	%	Avg	LOS
WB	R	12	12	98	0.1	A
	Subtotal	12	12	100	0.1	A
NW	T,	232	230	99	0.4	A
	Subtotal	232	230	99	0.4	А
SE	⊺ R	751 184	752 178	100 97	0.3 1.0	А А
	Subtotal	935	930	99	0.4	А
Tatal		4.470	1 170		0.1	
Total		1,179	1,172	99	0.4	A

Project: Analysis Period: Time Period:

Sandy La Caille TS Future (2050) Plus Project Morning Peak Hour Project #: UT20-1706

Intersection:

P2 In & SR-210 & P2 Out

Movement	Demand	Volume	Dominad	Deles de	
wovement			Served	Delay/Ve	n (sec)
	Volume	Avg	%	Avg	LOS
R	3	4	133	0.6	A
Subtotal	3	4	133	0.6	А
т	244	242	99	0.2	А
Subtotal	244	242	99	0.2	A
τ	920	920	100	2.1	А А
R	300	296	99	1.5	A
Subtotal	1,220	1,216	100	2.0	А
	1.469	1 462	100	16	A
	Subtotal T Subtotal T R	Subtotal 3 T 244 Subtotal 244 T 920 R 300	Subtotal 3 4 T 244 242 Subtotal 244 242 T 920 920 R 300 296 Subtotal 1,220 1,216	Subtotal 3 4 133 T 244 242 99 Subtotal 244 242 99 T 920 920 100 R 300 296 99 Subtotal 1,220 1,216 100	Subtotal 3 4 133 0.6 T 244 242 99 0.2 Subtotal 244 242 99 0.2 T 920 920 100 2.1 R 300 296 99 1.5 Subtotal 1,220 1,216 100 2.0

Intersection:

La Caille Lane & P6 Unsignalized Demand Volume A Туре: Delay/Veh (sec) Volume Served Approach Movement Avg Avg **10** 14 **10** 15 **98** 109 **0.2** 0.1 **А** А R NW 24 12 25 12 104 98 0.1 Subtotal A А SE 100 Subtotal 12 12 0.0 А Total 102 36 0.1 37 А

Project: Analysis Period: Time Period: Sandy La Caille TS Future (2050) Plus Project Morning Peak Hour Project #: UT20-1706

Intersection:

P5 & La Caille Lane

Туре:		Jnsignalized				
Annroach	Mournent	Demand	Volume	e Served	Delay/Ve	h (sec)
Approach	Movement	Volume	Avg	%	Avg	LOS
	т	34	36	107	0.7	A
NW	R	20	20	101	0.6	А
	Subtotal	54	56	104	0.7	А
-	т	12	12	98	0.0	А
SE	2007-0 10 10 01	10000		254947202		
	Subtotal	12	12	100	0.0	А
NE	R	4	4	100	2.5	A
	Subtotal	4	4	100	2.5	А
Total		70	72	103	0.6	A

Indextination Lob Lob Not Join Join Aut Denied Delvy (hr) 0.0 0.0 0.0 0.1 0.1 0.2 Total Delvy (hr) 0.1 0.1 0.1 0.2 1230 Total Delvy (hr) 10.7 0.3 0.2 10.0 8.7 2.1 23.0 Total Delvy (hr) 10.7 0.3 0.2 10.0 8.7 2.1 23.0 Total Delvy (hr) 10.7 0.3 0.2 10.0 8.7 2.1 23.0 Total Delvy (hr) 10.7 0.3 0.2 10.0 8.7 2.1 23.0 Total Delvy (hr) 10.0 12.23 112.6 59.7 3315 Total Delvy (hr) 10.0	Movement	EBL	EBR	NBL	NBT	SBT	SBR	All	
Denied Delver, (s) 0.1 0.0 0.0 0.3 0.4 0.2 Total Delver, (s) 30.1 115 46.9 15.7 27.0 12.4 23.4 Vehicles Exited 1256 89 12 23.4 1126 597 3315 Hourly Exit Rate 1258 89 11 23.4 1126 597 3315 Input Volume 124 188 10 237 1132 594 3330 Soft Vulume 101 101 107 99 99 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement Weil Will NBT NBR SBT All Deried Delay (th) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay (th) 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.1 Vehices Entered 1.7 8.1 0.4 0.1	Movement						1000 C 1000		
Total Delvy (hr) 10.7 0.3 0.2 10 8.7 2.1 23.0 Total Delvy (hr) 10.0 11.5 46.9 15.7 27.0 12.4 24.4 Vehicles Exted 1256 89 12 23.4 1126 598 3315 Vehicles Exted 1256 89 11 23.4 1126 597 3315 Input Volume 1241 88 10 237 1132 594 3302 %of Volume 101 101 107 99 99 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement 10.0 0.0 0.0 0.0 0.0 Deried Delvy (hr) 0.1 0.1 0.0 0.0 0.0 0.0 0.0 Total Devise (hr) 0.1 0.1 0.1 12.2 1.1 1.1 1.1 Vehicles Exter 17 29 1215 18 23 605 1907 Input Volume 19 27 1197 17 22 62 184									
Vehicles Entrend 1258 89 12 234 1126 598 3315 Vehicles Exited 1258 89 11 234 1126 597 3315 Input Volume 1241 88 10 237 1132 594 3302 %of Volume 101 101 107 99 99 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement Movement Movement Movement Deried Delvy(hr) 0 0.0 0.0 0.0 0.0 0.0 1 Cital DeV/eh (s) 0.2 0.1 0.0 0.1 0.2 0.6 1 Cital DeV/eh (s) 0.2 1.0.4 0.1 1.1 1.1 Vehicles Exited 17 29 1215 18 23 805 1907 Vehicles Exited 17 29 1215 18 23 805 1907 Vehicles Exited 17 29 1215 18 23 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Vehicles Exited 128 89 11 234 1126 597 3315 Hourly Exit Rate 1258 89 11 234 1126 597 3315 input Volume 1241 88 10 237 1132 594 3302 %of Volume 101 101 107 99 99 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement WBR NBT NBR SBT All Denied Delv(h) 0.0 </td <td>Total Del/Veh (s)</td> <td>30.1</td> <td>11.5</td> <td>46.9</td> <td>15.7</td> <td>27.0</td> <td>12.4</td> <td>24.4</td> <td></td>	Total Del/Veh (s)	30.1	11.5	46.9	15.7	27.0	12.4	24.4	
Hourly Exit Rate 1258 98 11 234 1126 597 3315 input Volume 1241 88 10 237 1132 594 3302 %of Volume 101 101 107 99 99 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement WB WBR NBT NBR SBL SBT All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.1 0.1 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.1 0.1 0.1 0.2 0.6 Total Delay (hr) 0.1 0.1 0.1 0.2 0.6 Total Delay (hr) 0.1 0.1 0.4 0.1 13.1 1.2 1.1 Vehicles Extred 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.1 0.1 3: SR-209 & SR-210 Performance by movement Movement EBT EBR WBL WBT NEL NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.1 0.1 Denied Delay (hr) 3.8 0.6 0.5 0.1 27 5.2 12.8 Total Dely(hr) 3.8 0.6 0.5 0.1 27 5.2 12.8 Total Dely(hr) 3.8 0.6 0.5 0.1 27 5.2 12.8 Total Dely(hr) 3.8 0.6 0.5 0.1 27 5.2 12.8 Total Delay (hr) 3.8 0.6 0.5 0.1 27 5.2 12.8 Total Delay (hr) 3.8 0.6 0.5 0.1 27 5.2 12.8 Total Delay (hr) 3.8 0.6 0.5 0.1 27 5.2 12.8 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128									
Input Volume 1241 88 10 237 1132 594 3302 %of Volume 101 101 107 99 99 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement WBL WBR NBT NBR SBL SBT All Denied Delvy(hr) 0.0									
%of Volume 101 101 107 99 99 100 100 2: Wasatch Boulevard & La Caille Access Performance by movement Movement WBL WBR NBT NBR SBT All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.1 0.1 0.1 0.1 0.2 0.6 Total Delay (hr) 0.1 0.1 0.1 0.1 1.2 1.1 Vehicles Entered 17 29 1215 18 23 605 1907 Hourty Exit Rate 17 29 1215 18 23 605 1907 Hourty Exit Rate 17 29 1215 18 23 605 1907 Input Volume 91 27 1197 17 22 602 1884 % of Volume 91 107 101 107 105 101 101 Brind Volume 91 0.0									
Z: Wasatch Boulevard & La Caille Access Performance by movement Movement WBL WBR NBT NBR SBL SBT All Denied Delvy (h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Denied Delvy (h) 0.1 0.1 0.0 0.2 0.0 0.0 Total Delvy (h) 0.1 0.1 0.1 0.2 0.6 100 Total Delvy (h) 0.1 0.1 0.1 1.2 1.1 Vehicles Entered 17 29 1215 18 23 605 1907 Input Volume 19 2.7 1197 1.7 22 602 1884 %of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement Movement EBT EBR WBL WBT NEL All Denied Delvy (h) 0.0 0.0 0.0 0.0 0.0 0.0 1.1 101 <									
Movement WBL WBR NBT NBR SBL SBT All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.1 0.1 0.1 0.0 0.0 0.0 0.0 Total Delay (hr) 0.1 0.1 0.1 0.2 0.6 Total Delay (hr) 0.1 0.1 1.1 1.1 1.1 Vehicles Extred 17 29 1214 18 23 605 1907 Vehicles Extred 17 29 1215 18 23 605 1907 Input Volume 19 27 1197 17 22 602 1884 %of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement Movement Movement Movement Mult Mult Mult NEL NER All Denied Delay (hr) 0.0									
Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Denied DelVeh (s) 0.2 0.1 0.0 0.0 0.0 0.0 Total Delay (hr) 0.1 0.1 0.0 0.0 0.0 0.0 Total DelyVeh (s) 21.7 8.1 0.4 0.1 13.1 1.2 1.1 Vehicles Entered 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 101 107 105 101 101 S SR-209 & SR-210 Performance by movement 2 602 103 12 12 12 12 12 12 12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ment</td></t<>									ment
Denied DelVen (s) 0.2 0.1 0.0 0.2 0.0 0.0 Total Delvy (hr) 0.1 0.1 0.1 0.0 0.1 0.2 0.6 Total Delvy (hr) 0.1 0.1 0.1 0.1 0.2 0.6 Total Delvy (hr) 21.7 8.1 0.4 0.1 1.1 Vehicles Exited 17 29 1215 18 23 605 1907 Vehicles Exited 17 29 1215 18 23 605 1907 Input Volume 19 27 1197 17 22 602 1884 % of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement Movement EBT EBR WBL NEL NER All Denied Dely (hr) 0.0 0.0 0.0 0.0 0.1 0.1 Denied Dely (hr) 3.8 0.6 0.5 <td< td=""><td></td><td>210000</td><td></td><td></td><td></td><td>2.00</td><td></td><td></td><td></td></td<>		210000				2.00			
Total Delay (hr) 0.1 0.1 0.1 0.1 0.2 0.6 Total DelVyh (s) 21.7 8.1 0.4 0.1 13.1 1.2 1.1 Vehicles Exited 17 29 1214 18 23 605 1907 Houty Exit Rate 17 29 1215 18 23 605 1907 Input Volume 19 27 1197 17 22 602 1884 %of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement Norment EBT EBR WBL WBT NEL NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.1 Denied Delay (hr) 38 0.6 0.5 0.1 2.7 5.2 12.8 Total Delvy (hr) 38 0.6 0.5 0.1 2.7 5.2 12.8 Total Delvy (hr)									
Total DelVeh (s) 21.7 8.1 0.4 0.1 13.1 1.2 1.1 Vehicles Entered 17 29 1214 18 23 606 1907 Vehicles Exited 17 29 1215 18 23 605 1907 Houtly Exit Rate 17 29 1215 18 23 605 1907 Input Volume 19 27 1197 17 22 602 1884 % of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement Movement EBT EBR WBL WBT NEL NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.1 0.1 Denied Delv(h (s) 0.0 0.0 0.0 0.0 0.2 12.8 Total Delv(h (s) 21.3 13.7 15.6 3.3 62.8 29.3 25.3 Vehicles Exited									
Vehicles Entered 17 29 1214 18 23 606 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Hourly Exit Rate 17 29 1215 18 23 605 1907 Input Volume 19 27 1197 17 22 602 1884 % of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement Nement All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1 Denied Delay (hr) 3.8 0.6 0.5 0.1 2.7 5.2 12.8 140 593 1764 Vehicles Exited 628 153 121 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Hourly Exit Rate 17 29 1215 18 23 605 1907 Input Volume 19 27 1197 17 22 602 1884 % of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement Movement EBT EBR WBL WBT NEL NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.1 0.1 0 Denied Delv/eh (s) 0.0 0.0 0.0 0.6 0.6 0.2 1704 128 Total Delv/eh (s) 21.3 13.7 15.6 3.3 62.8 29.3 25.3 Vehicles Exited 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Input Volume 628 153 120 126 141 593 1761 % of Volume 100 100 101 101 100									
Input Volume 19 27 1197 17 22 602 1884 %of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement EBT EBR WBL WBT NEL NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.1 0.1 Denied Delv(h (s) 0.0 0.0 0.0 0.6 0.6 0.2 Total Delay (hr) 3.8 0.6 0.5 0.1 2.7 5.2 12.8 Total Delv(h (s) 21.3 13.7 15.6 3.3 62.8 29.3 25.3 Vehicles Entered 62.8 153 122 12.8 140 593 1764 Vehicles Exited 62.6 153 121 12.8 142 595 1765 Iourly Exit Rate 62.8 153 120 12.6 141 593 1761 % of Volume 100 <td>Vehicles Exited</td> <td>17</td> <td>29</td> <td>1215</td> <td>18</td> <td>23</td> <td>605</td> <td>1907</td> <td></td>	Vehicles Exited	17	29	1215	18	23	605	1907	
% of Volume 91 107 101 107 105 101 101 3: SR-209 & SR-210 Performance by movement	Line when Freik Diete								
3: SR-209 & SR-210 Performance by movement Movement EBT EBR WBL WBT NEL NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.1 0.1 Denied Delv(h (s) 0.0 0.0 0.0 0.6 0.6 0.2 Total Delv(h (s) 21.3 13.7 15.6 3.3 62.8 29.3 25.3 Vehicles Entered 628 153 122 128 140 593 1764 Vehicles Exited 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 120 126 141 593 1761 % of Volume 100 100 101 101 100 100 100			27	1197					
Total Delay (hr) 3.8 0.6 0.5 0.1 2.7 5.2 12.8 Total DeWeh (s) 21.3 13.7 15.6 3.3 62.8 29.3 25.3 Vehicles Entered 628 153 122 128 140 593 1764 Vehicles Exited 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Input Volume 628 153 120 126 141 593 1761 % of Volume 100 100 101 101 100 100 100	Input Volume %of Volume <u>3: SR-209 & SR-2</u>	91 210 Perfoi	107 rmanc	e by m	oveme	ent		211	
Total DeVven (s) 21.3 13.7 15.6 3.3 62.8 29.3 25.3 Vehicles Entered 628 153 122 128 140 593 1764 Vehicles Exited 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Input Volume 628 153 120 126 141 593 1761 % of Volume 100 100 101 101 100 100	Input Volume %of Volume 3: SR-209 & SR-2 Movement	91 210 Perfoi EBT	107 rmanc EBR	e by m WBL	oveme WBT	ent NEL	NER	All	
Vehicles Entered 628 153 122 128 140 593 1764 Vehicles Exited 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Input Volume 628 153 120 126 142 593 1761 %of Volume 100 100 101 101 100 100	Input Volume %of Volume 3: SR-209 & SR-2 <u>Movement</u> Denied Delay (hr) Denied Delvy (hr)	91 210 Perfor EBT 0.0 0.0	107 rmanc EBR 0.0 0.0	e by m WBL 0.0 0.0	0Veme WBT 0.0 0.0	ent <u>NEL</u> 0.0 0.6	NER 0.1 0.6	All 0.1 0.2	
Vehicles Exited 626 153 121 128 142 595 1765 Hourly Exit Rate 626 153 121 128 142 595 1765 Input Volume 628 153 120 126 141 593 1761 % of Volume 100 101 101 100 100 100	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr)	91 210 Perfor EBT 0.0 0.0 3.8	107 rmanc EBR 0.0 0.0 0.6	e by m WBL 0.0 0.0 0.5	0Veme WBT 0.0 0.0 0.1	ent <u>NEL</u> 0.0 0.6 2.7	NER 0.1 0.6 5.2	All 0.1 0.2 12.8	
Hourly Exit Rate 626 153 121 128 142 595 1765 Input Volume 628 153 120 126 141 593 1761 % of Volume 100 100 101 101 101 100 100	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr)	91 210 Perfor EBT 0.0 0.0 3.8 21.3	107 rmanc EBR 0.0 0.0 0.6 13.7	e by m WBL 0.0 0.5 15.6	WBT 0.0 0.0 0.1 3.3	ent <u>NEL</u> 0.0 0.6 2.7 62.8	NER 0.1 0.6 5.2 29.3	All 0.1 0.2 12.8 25.3	
Input Volume 628 153 120 126 141 593 1761 % of Volume 100 100 101 101 101 100 100	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delveh (s) Total Delveh (s) Total Delveh (s) Vehicles Entered	91 210 Perfor 0.0 0.0 3.8 21.3 628	107 rmanc EBR 0.0 0.0 0.6 13.7 153	e by m WBL 0.0 0.0 0.5 15.6 122	WBT 0.0 0.0 0.1 3.3 128	ent 0.0 0.6 2.7 62.8 140	NER 0.1 0.6 5.2 29.3 593	All 0.1 0.2 12.8 25.3 1764	
	Input Volume % of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr) Total Delay (hr) Total DelvYeh (s) Vehicles Entered Vehicles Exited	91 210 Perfor 0.0 0.0 3.8 21.3 628 626	107 manc EBR 0.0 0.0 0.0 13.7 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121	WBT 0.0 0.0 0.1 3.3 128 128	ent 0.0 0.6 2.7 62.8 140 142	NER 0.1 0.6 5.2 29.3 593 595	All 0.1 0.2 12.8 25.3 1764 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied Delay (hr) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate	91 210 Perfor 0.0 3.8 21.3 628 626 626	107 rmanc 0.0 0.0 0.6 13.7 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121	WBT 0.0 0.0 0.1 3.3 128 128 128 128	ent <u>NEL</u> 0.0 0.6 2.7 62.8 140 142 142	NER 0.1 0.6 5.2 29.3 593 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
Hales Engineering 801.766.43	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	
	Input Volume %of Volume 3: SR-209 & SR-2 Movement Denied Delay (hr) Denied DelVeh (s) Total Delay (hr) Total Delay (hr) Total Delay (hr) Vehicles Entered Vehicles Exited Hourly Exit Rate Input Volume	91 210 Perfor 0.0 0.0 3.8 21.3 628 626 626 626 626 628	107 rmanc 0.0 0.0 0.6 13.7 153 153 153 153	e by m WBL 0.0 0.0 0.5 15.6 122 121 121 121 120	WBT 0.0 0.0 0.1 3.3 128 128 128 128 128 128	ent NEL 0.0 0.6 2.7 62.8 140 142 142 141	NER 0.1 0.6 5.2 29.3 593 595 595 595 595	All 0.1 0.2 12.8 25.3 1764 1765 1765	

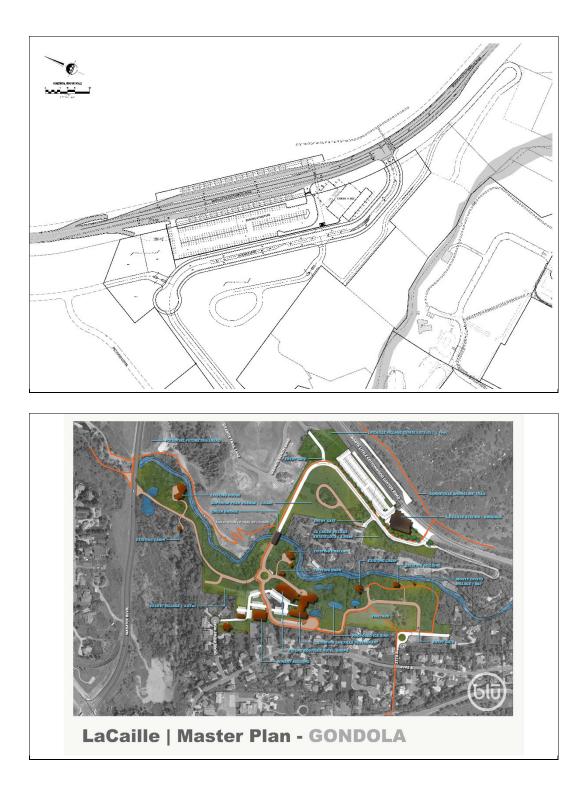
Movement EBL EBR SET SER NWL NWT Au Denied Delwy (hr) 0.0	4: SR-210 & La C	aille Lane	e Perfo	ormanc	e by n	novem	ent		
Denied DelVeh (s) 0.0 1.3 0.0 0.0 0.0 0.0 Total Delvy (hr) 0.2 0.0 0.4 0.0 0.1 0.8 Total Delvy (hr) 0.2 0.0 0.4 0.0 0.1 0.8 Vehicles Exited 15 11 773 15 40 233 1088 Hourly Exit Rate 15 11 773 15 41 233 1088 Input Volume 16 10 772 15 39 230 1082 %of Volume 95 107 100 102 106 101 101 5: P1 Out & SR-210 Performance by movement Movement SET NWT NWR NER All Denied Delv (hr) 0.0 0.0 0.0 0.0 0.0 Dot Total Delv (hr) 0.1 0.0 Dot Total Delv (hr) Dat Dat Exerce NU Vehicles Exited 738 232 15 41 1026<	Movement	EBL	EBR	SET	SER	NWL	NWT	All	
Total Delay (hr) 0.2 0.0 0.4 0.0 0.1 0.1 0.8 Total DeVVeh (s) 38.0 2.7 1.8 0.5 10.1 1.8 2.6 Vehicles Entered 15 11 773 15 40 233 1087 Vehicles Exited 15 11 773 15 41 233 1088 Input Volume 16 10 772 15 39 230 1082 % of Volume 95 107 100 102 106 101 101 5: P1 Out & SR-210 Performance by movement 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0									
Total DeVven (s) 38.0 2.7 1.8 0.5 10.1 1.8 2.6 Vehicles Entered 15 11 773 15 40 233 10087 Vehicles Exited 15 11 773 15 41 233 10088 Input Volume 16 10 772 15 39 230 1082 % of Volume 95 107 100 102 106 101 101 5: P1 Out & SR-210 Performance by movement Movement SE NWT NWR NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.3 0.0 0.0 0.0 Denied Delay (hr) 0.3 0.0 0.0 0.3 1.0 Denied Delay (hr) 0.3 0.0 0.0 0.3 1.0 Denied Delay (hr) 0.3 0.0 0.0 0.3 1.0 Denied Delay (hr) 0.3 2.2 15 41 1026 Input Volume									
Vehicles Entered 15 11 773 15 40 233 1067 Vehicles Exited 15 11 773 15 41 233 1088 Houly Exit Rate 15 11 773 15 41 233 1088 Input Volume 16 10 772 15 39 230 1082 % of Volume 95 107 100 102 106 101 101 5: P1 Out & SR-210 Performance by movement NWT NWR NER All Denied Delay (hr) 0.0 0.									
Vehicles Exited 15 11 773 15 41 233 1088 Hourly Exit Rate 15 11 773 15 41 233 1088 Input Volume 16 10 772 15 39 230 1082 % of Volume 95 107 100 102 106 101 101 5: P1 Out & SR-210 Performance by movement All Movement SET NWT NWR NER All Denied Delay (Im) 0.0 0.0 0.0 0.0 0.0 0.0 Denied Dely (Im) 0.3 0.0 0.0 0.0 0.0 Denied Dely (Im) 0.3 0.0 0.0 0.3 Total Dely (Im) 0.3 0.0 0.0 0.3 Total Dely (Im) 0.3 0.0 0.0 1.3 Total Dely (Im) Total Dely (Im) 0.3 0.4 2.3 1.2 Vehicles Exited 738 232 15 41 1026 Imput Volume 736 233 12									
Input Volume 16 10 772 15 39 230 1082 % of Volume 95 107 100 102 106 101 101 5: P1 Out & SR-210 Performance by movement Movement SET NWT NWR NER All Denied Delay (hr) 0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>41</td> <td></td> <td></td> <td></td>						41			
%of Volume 95 107 100 102 106 101 101 5: P1 Out & SR-210 Performance by movement Image: Signal Amage:			11	773					
5: P1 Out & SR-210 Performance by movement Movement SET NWT NWR NER All Denied Delay (Im) 0.0 0.0 0.0 0.0 0.0 Denied Delv/eh (s) 0.0 0.0 0.0 0.0 0.0 Total Delv/eh (s) 1.3 0.8 0.4 2.3 1.2 Vehicles Entered 737 232 15 41 1025 Vehicles Exited 738 232 15 41 1026 Input Volume 736 233 12 43 1024 % of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement Movement Movement Movement Movement Movement WBR SET SER NWT All Movement Movement WBR SET SER NWT All Movement Denied Delay (In') 0.0 0.0 0.0 0.0 Do Do Ordal Delay (In') 0.0 0.0 0.0 Do Do									
Movement SET NWT NWR NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 Denied DelVeh (s) 0.0 0.0 0.0 0.0 0.0 Denied DelVeh (s) 0.1 0.0 0.0 0.0 0.0 Denied DelVeh (s) 1.3 0.8 0.4 2.3 1.2 Vehicles Entered 737 232 15 41 1025 Vehicles Entered 738 232 15 41 1026 Hourly Exit Rate 738 232 15 41 1026 Input Volume 736 233 12 43 1024 %of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement Movement WBR SET SER NWT All Denied Delay (hr) 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 Denied Delay (hr) 0.0 0.0							101	101	
Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied De/Veh (s) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.3 0.0 0.0 0.3 Total Delay (hr) 0.3 0.0 0.0 0.3 Total De/Veh (s) 1.3 0.8 0.4 2.3 1.2 Vehicles Entered 737 232 15 41 1026 Hourly Exit Rate 738 232 15 41 1026 Input Volume 736 233 12 43 1024 % of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement Movement Movement Movement Movement Movement WBR SET SER NWT All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.									
Denied Del/Veh (s) 0.0 0.0 0.3 0.1 0.0 Total Delay (hr) 0.3 0.0 0.0 0.0 0.3 Total Delvy (h) 0.3 0.0 0.0 0.0 0.3 Total Delvy (h) 1.3 0.8 0.4 2.3 1.2 Vehicles Exited 738 232 15 41 1026 Hourly Exit Rate 738 232 15 41 1026 Input Volume 736 233 12 43 1024 % of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement 5 5 NWT All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Total Delvy (h(s) 0.1 0.3 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0	processory of the second s								
Total Delay (hr) 0.3 0.0 0.0 0.3 Total DeVVeh (s) 1.3 0.8 0.4 2.3 1.2 Vehicles Entered 737 232 15 41 1025 Vehicles Entered 737 232 15 41 1026 Hourly Exit Rate 738 232 15 41 1026 Input Volume 736 233 12 43 1024 % of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement Movement Movement Multiple Performance by movement Movement WBR SET SER NWT All Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.1 0.0 0.0 Total Delay (hr) 0.0 0.1 0.0 0.0 Total Delay (hr) 0.0 0.1 0.0									
Total DeVven (s) 1.3 0.8 0.4 2.3 1.2 Vehicles Entered 737 232 15 41 1025 Vehicles Exited 738 232 15 41 1026 Inourly Exit Rate 738 232 15 41 1026 Input Volume 736 233 12 43 1024 % of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement All Denied Delay (hr) 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Don Total Delay (hr) 0.0 0.0 0.0 0.0 0.0 Don Total Delay (hr) 0.0 0.1 0.0 0.0 0.0 Don Don Vehicles Entered 12 752 179 230 1173 Vehicles Exited 12 752 178 230 1172 Hourly Exit Rate 12 751 184 232 1179									
Vehicles Exited 738 232 15 41 1026 Hourly Exit Rate 738 232 15 41 1026 Input Volume 736 233 12 43 1024 % of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement Movement Multiple All Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.1 0.0 0.0 0.1 0.0 Total DelvVeh (s) 0.1 0.3 1.0 0.4 0.4 Vehicles Entered 12 752 179 230 1173 Vehicles Exited 12 752 178 230 1172 Hourly Exit Rate 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
Hourly Exit Rate 738 232 15 41 1026 Input Volume 736 233 12 43 1024 % of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement Movement WBR SET SER NWT All Denied Delay (Im) 0.0 0.0 0.0 0.0 0.0 Denied Delay (Im) 0.0 0.1 0.0 0.0 0.0 1 Total Delay (In') 0.0 0.1 0.0 0.0 1 173 Vehicles Entered 12 752 179 230 1173 Vehicles Exited 12 752 178 230 1172 Inourly Exit Rate 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
Input Volume 736 233 12 43 1024 % of Volume 100 100 122 96 100 6: P1 In & SR-210 Performance by movement Movement All Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.1 Total Delay (hr) 0.1 0.0 0.0 0.1 Vehicles Entered 12 752 179 230 1173 Vehicles Exited 12 752 178 230 1172 Inourly Exit Rate 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
%of Volume 100 102 96 100 6: P1 In & SR-210 Performance by movement Movement All Movement WBR SET SER NWT All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
6: P1 In & SR-210 Performance by movement Movement WBR SET SER NWT All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied DelWyeh (s) 0.1 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.1 0.0 0.0 0.1 Total Delay (hr) 0.0 0.1 0.0 0.0 0.1 Total DelvYeh (s) 0.1 0.3 1.0 0.4 0.4 Vehicles Entered 12 752 179 230 1173 Vehicles Exited 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
Denied De/Veh (s) 0.1 0.0 0.0 0.0 Total Delay (hr) 0.0 0.1 0.0 0.1 Total De/Veh (s) 0.1 0.3 1.0 0.4 0.4 Vehicles Entered 12 752 179 230 1173 Vehicles Exited 12 752 178 230 1172 Hourly Exit Rate 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
Total Delay (hr) 0.0 0.1 0.0 0.0 0.1 Total DeVVeh (s) 0.1 0.3 1.0 0.4 0.4 Vehicles Entered 12 752 179 230 1173 Vehicles Exited 12 752 178 230 1172 Hourly Exit Rate 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
Vehicles Entered 12 752 179 230 1173 Vehicles Exited 12 752 178 230 1172 Hourly Exit Rate 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
Vehicles Exited 12 752 178 230 1172 Hourly Exit Rate 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
Hourly Exit Rate 12 752 178 230 1172 Input Volume 12 751 184 232 1179									
Input Volume 12 751 184 232 1179									

3 3	Future (2050) Plu	s Project					09/17/20
Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.5 0.1 0.0 0.7 Vehicles Entred 4 920 296 242 1462 Input Volume 3 920 300 244 1468 % of Volume 13 100 99 99 100 8: La Caille Lane & P6 Performance by movement Movement Movement Movement Movement Total Delay (hr) 0.0 0.0 0.0 0.0 1.1 Vehicles Entered 12 10 15 37 Hourly Exit Rate 12 10 14 36 % of Volume	7: P2 In & SR-210) & P2 Ou	it Perf	orman	ce by i	noveme	ent
Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.5 1.0 0.0 0.7 Total Delay (hr) 0.0 0.5 1.0 0.0 0.7 Total Delay (hr) 0.0 0.5 1.0 0.0 0.7 Total Delay (hr) 0.0 0.5 1.6 0.0 0.7 Vehicles Entred 4 920 296 242 1462 1402 Input Volume 3 920 300 244 1468 % % % 100 0.0	Movement	WBR	SET	SER	NWT	All	
Denied De/Veh (s) 0.1 0.0 0.0 0.0 Total Delay (hp) 0.0 0.5 0.1 0.0 0.7 Total Delay (hp) 0.6 2.1 1.5 0.2 1.6 Vehicles Entered 4 920 295 242 1461 Vehicles Entered 4 920 296 242 1462 Hourly Exit Rate 1 90 99 100 99 99 100 S: La Caille Lane & Pé Performance by movement 10 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10							
Total DerVeh (s) 0.6 2.1 1.5 0.2 1.6 Vehicles Extered 4 920 295 242 1461 Hourly Ext Rate 4 920 296 242 1462 Hourly Ext Rate 4 920 296 242 1462 Hourly Ext Rate 4 920 296 242 1462 Soft Volume 133 100 99 99 100 S: La Caille Lane & P6 Performance by movement Movement SET NWT NWR All Denied Delvy (h) 0.0 0.0 0.0 0.0 Denied Delvy (h) 0.0 0.0 Denied Delvy (h) 0.0 0.0 0.0 Denied Delvy (h) 0.0 Denied Delvy (h) Delied Delvy (h)	Denied Del/Veh (s)						
Vehicles Extred 4 920 295 242 1461 Vehicles Exted 4 920 296 242 1462 Input Volume 3 920 300 244 1463 %of Volume 133 100 99 99 100 8: La Caille Lane & P6 Performance by movement							
Verkies Exited 4 920 296 242 1462 Hourly Exit Rate 4 920 296 242 1462 Sof Volume 133 100 99 99 100 Site Calle Lane & P6 Performance by movement Movement SET NWT NWR All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Catal Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Catal Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Catal Delay (hr) 0.0							
Hourty Exit Rate 4 920 296 242 1462 Input Volume 3 920 300 244 1468 Soft Volume 133 100 99 99 100 S: La Caille Lane & P6 Performance by movement Movement SET NWT NWR All Denied Delv(h) 0.0 0.0 0.0 Denied Delv(h) 0.0 0.0 0.0 Total Delv(h) 0.0 0.0 0.0 Peried Delv(h) 0.0 0.0 0.0 Total Delv(h) 0.0 0.0 0.0 Total Delv(h) 0.0 0.0 0.0 Total Delv(h) 0.0 0.0 0.0 S: F5 & La Caille Lane Performance by movement Movement SET NWT NWR NER All Denied Delv(h) 0.0 0.0 0.0 0.0 Denied Delv(h) 0.0 0.0 0.0 0.0 Denied Delv(h) 0.0 0.0 0.0 0.0 Total Delv(h) 0.0 0.0 0.0 0.0 Denied Delv(h) 0.0 0.0 0.0 0.0 Total Delv(h) 0.0 0.0 0.0 0.0 Denied Delv(h) 0.0 0.0 0.0 0.0 Total Delv(h) 0.0 0.0 0.0 0.0 S: 25 0.6 Vehicles Exited 12 36 20 4 72 Vehicles Exited 12 36 20 4 70 Sof Volume 98 107 101 100 103 Hates Engineering X81.786.43					1.000		
Input Volume 3 920 300 244 1468 %of Volume 133 100 99 99 100 S: La Caille Lane & P6 Performance by movement Movement Movement Movement Movement Denied Delv (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Total Delv (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Vehicles Exted 12 10 15 37 Hourty Ext Rate 12 10 15 37 Hourty Ext Rate 12 10 14 36 %of Volume 98 98 109 102 9: P5 & La Caille Lane Performance by movement Movement Set NWT NWR All Denied Delv (hr) 0.0 0.0 0.0 0.0 10.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100							
%of Volume 133 100 99 99 100 8: La Caille Lane & P6 Performance by movement Image: Constraint of the second secon							
Movement SET NWT NWR All Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.1 15 37 Hourly Exit Rate 12 10 14 36 % of Volume 98 98 109 102 9 9: P5 & La Caille Lane Performance by movement Movement Set NWT NWR All Denied Delay (hr) 0.0 0.0 0.0 0.0 100 Total Delay (hr) 0.0 0.0							
Movement SET NWT NWR All Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.1 15 37 Hourly Exit Rate 12 10 14 36 % of Volume 98 98 109 102 9 9: P5 & La Caille Lane Performance by movement Movement Set NWT NWR All Denied Delay (hr) 0.0 0.0 0.0 0.0 100 Total Delay (hr) 0.0 0.0	8 [.] La Caille Lane	& P6 Per	ormai	nce hv	move	ment	
Denied Delay (hr) 0.0 0.0 0.0 Denied DeVVeh (s) 0.1 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 Vehicles Entered 12 10 15 37 Vehicles Exited 12 10 15 37 Hourly Exit Rate 12 10 14 36 % of Volume 98 98 109 102 9: P5 & La Caille Lane Performance by movement 10 14 36 Movement SET NW/T NW/R NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0							
Denied DelVeh (s) 0.1 0.0 0.0 0.0 Total DelVeh (s) 0.0 0.0 0.0 0.0 0.0 Total DelVeh (s) 0.0 0.0 0.0 0.0 0.0 0.0 Vehicles Entered 12 10 15 37 0.0 0.0 0.0 0.0 Vehicles Exted 12 10 15 37 0.0 0							
Total Delay (hr) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.2 0.1 0.1 Vehicles Exited 12 10 15 37 Yehicles Exited 12 10 15 37 Input Volume 12 10 14 36 %of Volume 98 98 109 102 9: P5 & La Caille Lane Performance by movement 10 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delveh (s) 0.0							
Total DeVven (s) 0.0 0.2 0.1 0.1 Vehicles Entered 12 10 15 37 Houthy Exit Rate 12 10 15 37 Houthy Exit Rate 12 10 14 36 % of Volume 98 98 109 102 9: P5 & La Caille Lane Performance by movement 10 0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0							
Vehicles Exited 12 10 15 37 Hourly Exit Rate 12 10 14 36 % of Volume 98 98 109 102 9: P5 & La Caille Lane Performance by movement Image: Constraint of the second of the	Total Del/Veh (s)	0.0	0.2	0.1	0.1		
Hourly Exit Rate 12 10 15 37 Input Volume 12 10 14 36 % of Volume 98 98 109 102 9: P5 & La Caille Lane Performance by movement Imput Volume 10 10 Movement SET NWT NWR NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Total Delv4eh (s) 0.0 0.0 0.0 0.0 0.0 Total Delv4eh (s) 0.0 0.0 4 72 Vehicles Exited 12 36 20 4 72 Hourly Exit Rate 12 36 20 4 72 10 100 103 % of Volume 98 107 101 100 103 103 103 101 103							
Input Volume 12 10 14 36 % of Volume 98 98 109 102 9: P5 & La Caille Lane Performance by movement Movement All Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 Total Delvy (h (s) 0.0 0.0 0.0 0.0 Total Delvy (h (s) 0.0 0.0 0.0 0.0 Vehicles Entered 12 36 20 4 72 Vehicles Exited 12 36 20 4 72 Hourly Exit Rate 12 36 20 4 72 Hourly Exit Rate 12 34 20 4 70 % of Volume 98 107 101 100 103							
% of Volume 98 98 109 102 9: P5 & La Caille Lane Performance by movement Movement All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Total DelvYeh (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total DelvYeh (s) 0.0 0.7 0.6 2.5 0.6 Vehicles Entered 12 36 20 4 72 Hourly Exit Rate 12 36 20 4 70 % % 98 107 101 100 103							
9: P5 & La Caille Lane Performance by movement Movement SET NWT NWR NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Del/Veh (s) 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 0.0 Vehicles Exited 12 36 20 4 72 Vehicles Exited 12 36 20 4 72 Input Volume 12 34 20 4 70 % of Volume 98 107 101 100 103 Hates Engineering 801.766.43							
Movement SET NWT NWR NER All Denied Delay (hr) 0.0 0.0 0.0 0.0 0.0 Denied Del/Veh (s) 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 0.0 Vehicles Exterd 12 36 20 4 72 Vehicles Exited 12 36 20 4 72 Hourly Exit Rate 12 34 20 4 70 % of Volume 98 107 101 100 103				100	.02		
Denied Delay (hr) 0.0 0.0 0.0 0.0 Denied Del/Veh (s) 0.0 0.0 0.1 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 Total Del/Veh (s) 0.0 0.7 0.6 2.5 0.6 Vehicles Entered 12 36 20 4 72 Vehicles Exited 12 36 20 4 72 Hourly Exit Rate 12 36 20 4 72 Input Volume 12 34 20 4 70 % of Volume 98 107 101 100 103	9: P5 & La Caille	Lane Perf	ormai	nce by	move	ment	
Denied DeWen (s) 0.0 0.0 0.0 0.0 0.0 Total Delay (hr) 0.0 0.0 0.0 0.0 0.0 0.0 Total DeWen (s) 0.0 0.7 0.6 2.5 0.6 Vehicles Entered 12 36 20 4 72 Vehicles Exited 12 36 20 4 72 Hourly Exit Rate 12 36 20 4 72 Input Volume 12 34 20 4 70 % of Volume 98 107 101 100 103							
Total Delay (hr) 0.0 0.0 0.0 0.0 Total Delvyeh (s) 0.0 0.7 0.6 2.5 0.6 Vehicles Entered 12 36 20 4 72 Vehicles Exited 12 36 20 4 72 Hourly Exit Rate 12 36 20 4 72 Hourly Exit Rate 12 36 20 4 72 Hourly Exit Rate 12 34 20 4 70 % of Volume 98 107 101 100 103							
Total De/Ven (s) 0.0 0.7 0.6 2.5 0.6 Vehicles Entered 12 36 20 4 72 Vehicles Exited 12 36 20 4 72 Haury Exit Rate 12 36 20 4 72 Input Volume 12 34 20 4 70 % of Volume 98 107 101 100 103							
Vehicles Entred 12 36 20 4 72 Hourly Exit Rate 12 36 20 4 72 Input Volume 12 34 20 4 72 Input Volume 12 34 20 4 70 % of Volume 98 107 101 100 103							
Hourly Exit Rate 12 36 20 4 72 Input Volume 12 34 20 4 70 % of Volume 98 107 101 100 103							
Input Volume 12 34 20 4 70 % of Volume 98 107 101 100 103	Vehicles Exited	12	36	20	4	72	
% of Volume 98 107 101 100 103	Hourly Exit Rate	12		20		72	
Hales Engineering 801.766.43							
	% of Volume	98	107	101	100	103	
1220 North 500 West, Ste. 202, Lehi, Utah 84043 Page							
		•. 202, Lehi, Ut	tah 8404	3			

Sandy La Caille TS Future (2050) Plus Pro	ect	Morning Peak Hou 09/17/20
Total Network Perform		
Denied Delay (hr)	0.4	
Denied Del/Veh (s)	0.4	
Total Delay (hr)	53.1	
Total Del/Veh (s)	42.4	
Vehicles Entered	4218	
Vehicles Exited	4222	
Hourly Exit Rate	4222	
Input Volume	23600	
% of Volume	18	
Hales Engineering		001 762 42
Hales Engineering 1220 North 500 West, Ste. 202, L		801.766.43 Page

Future (2050) Plus	Project								09/17/2020
Intersection: 1: SR	-210 & V	Vasato	h Bou	levard					
Movement	EB	EB	EB	NB	NB	SB	SB		
Directions Served	L	L	R	L	Т	Т	Т		
Maximum Queue (ft)	318	482	196	52	194	287	305		
Average Queue (ft) 95th Queue (ft)	201 300	233 461	39 214	11 38	82 159	167 251	177 264		
Link Distance (ft)	300	2821	2821	30	2657	4997	4997		
Upstream Blk Time (%)		LULI	LULI		2001	1001	1001		
Queuing Penalty (veh)									
Storage Bay Dist (ft)	250			100					
Storage Blk Time (%)	2	4			5				
Queuing Penalty (veh)	15	28			0				
Intersection: 2: Wa	satch Bo	ouleva	rd & I	a Caille	- Acce	SS			
Movement	WB	SB							
Directions Served Maximum Queue (ft)	LR 59	L 58							
Average Queue (ft)	18	16							
95th Queue (ft)	41	46							
	643								
Link Distance (ft)	045								
Upstream Blk Time (%)	043								
Upstream Blk Time (%) Queuing Penalty (veh)	043								
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	043	120							
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)			n						
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement	-209 & S EB	SR-210 WB	WB	NE	NE				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served	-209 & S EB TR	SR-210 WB L	WB T	L	R				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft)	- <u>209 & S</u> EB TR 442	SR-210 WB L 109	WB T 82	L 196	R 29			_	
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft)	- <u>209 & S</u> EB TR 442 160	SR-210 WB L 109 50	WB T 82 18	L 196 100	R 29 1				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)	-209 & S EB TR 442 160 331	SR-210 WB L 109	WB T 82 18 57	L 196 100 165	R 29				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft)	- <u>209 & S</u> EB TR 442 160	SR-210 WB L 109 50	WB T 82 18	L 196 100	R 29 1				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Upstream Blk Time (%) Queuing Penalty (veh)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93	WB T 82 18 57	L 196 100 165	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) Storage Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) Storage Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				
Upstream Bik Time (%) Queuing Penalty (veh) Storage Bik Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bik Time (%) Queuing Penalty (veh)	-209 & S EB TR 442 160 331	SR-210 WB L 109 50 93 125 0	WB T 82 18 57 2072	L 196 100 165 13880	R 29 1 30				801 766 4242
Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: SR Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	-209 & S EB TR 442 160 331 2632	BR-210 WB L 109 93 125 0 0	WB T 82 18 57 2072 0 0 0	L 196 100 165 13880	R 29 1 30				801.766.4343 Page 5

	-210 & La	a Caill	e Lane	è			
Movement	EB	EB	SE	SE	NW	NW	
Directions Served	L	R	Т	TR	L	т	
Maximum Queue (ft)	39	23	111	39	62	85	
Average Queue (ft)	12	6	24	3	20	9	
95th Queue (ft)	35	23	81	19	50	44	
Link Distance (ft)	440		274	274		866	
Upstream Blk Time (%)							
Queuing Penalty (veh)		200			200		
Storage Bay Dist (ft) Storage Blk Time (%)		200			200		
Queuing Penalty (veh)							
Intersection: 5: P1	Out & SF	R-210					
Movement	NW	NE					Ĩ
Directions Served	R	R					
Maximum Queue (ft)	8	41					
Average Queue (ft)	0	21					
95th Queue (ft)	8	42					
Link Distance (ft)		101					
Upstream Blk Time (%)							
Queuing Penalty (veh)	50						
Storage Bay Dist (ft) Storage Blk Time (%)	50 0						
Queuing Penalty (veh)	0						
Intersection: 6: P1	In & SR-	210					
Directions Served							
Maximum Queue (ft)							
Average Queue (ft) 95th Queue (ft)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)							_
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)							
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)							


Future (2050) Plu	s Project			09/17/2020
Intersection: 7: P2	2 In & SR-21	0 & P2 Out		
Movement				
Directions Served				
Maximum Queue (ft)				
Average Queue (ft)				
95th Queue (ft)				
Link Distance (ft)				
Upstream Blk Time (%)				
Queuing Penalty (veh) Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				
Intersection: 8: La	Coille Long	2 D6		
		- & F0		
Movement				
Directions Served				
Maximum Queue (ft) Average Queue (ft)				
95th Queue (ft)				
Link Distance (ft)				
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)				
Storage Blk Time (%) Queuing Penalty (veh)				
Storage Blk Time (%)	∑& La Caille	Lane		
Storage Blk Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement	NE	Lane		
Storage Blk Time (%) Queuing Penalty (veh) Intersection: 9: P5 <u>Movement</u> Directions Served	NE LTR	Lane	_	
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft)	NE LTR 31	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft)	NE LTR 31 4	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) Sth Queue (ft) Link Distance (ft)	NE LTR 31 4	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%)	NE LTR 31 4 20	- Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	- Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	- Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	<u>Lane</u>		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	- Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Uink Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%) Queuing Penalty (veh)	NE LTR 31 4 20	Lane		
Storage Bik Time (%) Queuing Penalty (veh) Intersection: 9: P5 Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Bik Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Bik Time (%)	NE LTR 31 4 20 365			801.766.4343 Page 7

Future (2050) Plu		
Intersection: 10: E	Send	
Movement	EB	
Directions Served	Т	
Maximum Queue (ft)	4	
Average Queue (ft)	0	
95th Queue (ft)	4	
Link Distance (ft)	2072	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft) Storage Blk Time (%)		
Queuing Penalty (veh)		
Network Summar	/	
Network wide Queuing Pe	nalty: 46	
Hales Engineering		801.766.43

Sandy - La Caille Station Traffic Impact Study

APPENDIX C

Site Plan

HALES DENGINEERING Sandy - La Caille Station Traffic Impact Study **APPENDIX D** 95th Percentile Queue Length Reports

<text></text>	Bit Period: Moning Peak Hour Project #: UT20-1706 SP: Percentile Cueue Length (feet) NE SB N E N	Time Period: Morning Peak Hour BS [®] Percentile Cueue Length (fest) Project #: UT20-1706	SimTraffic Queueing Report Project: Sandy La Caille TS Analysis: Existing (2020) Background		HALE	S DEN	
Intersection LR L R T L R T T R T L R T T T T R T L R T T T T T R T L R T T T T T R T L R T <	Intersection IR LR LR L R L R TR L TR L <th>Intersection LR LR R L R T LTR L R T L R L L L L L R T Utility State L L L L L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T D State D State State State State State State State State State L</th> <th>Time Period: Morning Peak Hour</th> <th></th> <th></th> <th></th> <th>Project #: UT20-170</th>	Intersection LR LR R L R T LTR L R T L R L L L L L R T Utility State L L L L L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T L R T D State D State State State State State State State State State L	Time Period: Morning Peak Hour				Project #: UT20-170
Project: Sandy La Caille TS Analysis: Mtigated Existing (2020) Background Time Period: Morring Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB X EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & VAsatch Boulevard 02: Wasatch Boulevard & La Caille Access 03: SR-200 & SR-210 0 15	Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Percentile Oueue Length (feet) Project #: UT20-1706 NE SB X EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 04: SR-210 & SR-210 Wasatch Boulevard & La Caille Access 05: SR-200 & SR-210 05: SR-2	Project: Sandy La Caille TS Analysis: Mtigade Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB W Intersection LR LT R L T LT L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 8	01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 03: SR-209 & SR-210	LR LTR L 9 1,350	R T LT 913 2,229 31	R L R 391 1,710 I 32	TR L LR LT T - - 9 92 55 2
Project: Sandy La Caille TS Analysis: Mtigated Existing (2020) Background Time Period: Morring Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB X EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & VAsatch Boulevard 02: Wasatch Boulevard & La Caille Access 03: SR-200 & SR-210 0 15	Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Percentile Oueue Length (feet) Project #: UT20-1706 NE SB X EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 04: SR-210 & SR-210 Wasatch Boulevard & La Caille Access 05: SR-200 & SR-210 05: SR-2	Project: Sandy La Caille TS Analysis: Mtigade Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB W Intersection LR LT R L T LT L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 8					
Project: Sandy La Caille TS Analysis: Mtigated Existing (2020) Background Time Period: Morring Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB X, EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Visastch Boulevard 03: SR-209 & SR-210 15	Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Percentile Oueue Length (feet) Project #: UT20-1706 NE SB X EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 04: SR-210 & SR-210 Wasatch Boulevard & La Caille Access 05: SR-200 & SR-210 05: SR-2	Project: Sandy La Caille TS Analysis: Mtigade Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB W Intersection LR LT R L T LT L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 8					
Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB X, EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 03: SR-209 & SR-210 15	Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Percentile Oueue Length (feet) Project #: UT20-1706 NE SB X EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 04: SR-210 & SR-210 Wasatch Boulevard & La Caille Access 05: SR-200 & SR-210 05: SR-2	Project: Sandy La Caille TS Analysis: Mtigade Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB W Intersection LR LT R L T LT L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 8					
Project: Sandy La Caille TS Analysis: Mtigated Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB X, EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & 268 - 389 430 03: SR-208 & SR-210 10	Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Percentile Oueue Length (feet) Project #: UT20-1706 NE SB X EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 03: SR-200 & SR-210 Wasatch Boulevard & La Caille Access 04: SR-210 & SR-210 Wasatch Boulevard & La Caille Access 05: SR-200 & SR-210 05: SR-2	Project: Sandy La Caille TS Analysis: Mtigade Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB W Intersection LR LT R L T LT L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 8					
Project: Sandy La Caille TS Analysis: Mtigated Existing (2020) Background Time Period: Morring Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 Innovative transportation solutions solutions Innovative transportation solutions Project #: UT20-1706 Innovative transportation solutions Innovative	Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Percentile Queue Length (feet) Project #: UT20-1706 NE SB X, EB WB Intersection LR LT R L T LTR L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 03: SR-200 & SR-210 SR SR State S	Project: Sandy La Caille TS Analysis: Mtigade Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) Project #: UT20-1706 NE SB W Intersection LR LT R L T LT L R TR L LR LT TR 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 8					
Intersection LR LT R L T LR L T L R L R L R L R L R L R L R L R <thl< th=""> L R</thl<>	Intersection LR LT R L T LTR L R L R L R L R L R L R L R L R L R L R L R L R L R L L R L L R L L T LT L R L L L L L L L L T LT L R L	Intersection LR LT R L T LR R R L R L R L R L R L R L R L R L R L R L R L R L R L R L R L L R L T T T L R T L R L L R L L R L T R D C T T R D T T R D T T R D T T T R T R T	Sim Traffia Quanaina Banart				
			Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Peak Hour		HALES) ENC	e transportation solutions
			Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) 95 th Percentile Queue Length (feet) 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 03: SR-209 & SR-210	d NE LR LT R 	SB ,, L T LTF 268 8 33	EB L R T 389 430 	e transportation solutions Project #: UT20-1706 R L LR LT TR
			Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) 95 th Percentile Queue Length (feet) 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 03: SR-209 & SR-210	d NE LR LT R 	SB ,, L T LTF 268 8 33	EB L R T 389 430 	e transportation solutions Project #: UT20-1706 R L LR LT TR
			Project: Sandy La Caille TS Analysis: Mitigated Existing (2020) Background Time Period: Morning Peak Hour 95 th Percentile Queue Length (feet) 95 th Percentile Queue Length (feet) 01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access 03: SR-209 & SR-210	d NE LR LT R 	SB ,, L T LTF 268 8 33	EB L R T 389 430 	e transportation solutions Project #: UT20-1706 R L LR LT TR

SimTraffic Queueing Report			-0 /					
Project: Sandy La Caille TS	F	IALE	-5		v Gi I ovative ti	IN E t ransport	⊟ H I ation so	NG
Analysis: Future (2025) Background Time Period: Morning Peak Hour					_			
95 th Percentile Queue Length (feet)								0-1706
Intersection	LR LT	R L		,,,, .TR L	EB R	TR		VB RLT
01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access		19		39		-	 13	
03: SR-209 & SR-210 04: Project Access & SR-210	125 20	144 	-	40 3		110 {	59 	
SimTraffic Queueing Report	•		/					
Project: Sandy La Caille TS		IALE	ES (NGI ovative to	NEt	⊟RI ation so	NG
Analysis: Mitigated Future (2025) Background Time Period: Morning Peak Hour	ļ.							
95 th Percentile Queue Length (feet)						roject		0-1706
Intersection	NE LR LT	SB L T	LTR	L F	B TR	LL	WB LR L1	
01: SR-210 & Wasatch Boulevard 02: Wasatch Boulevard & La Caille Access		329 20	1 1	399 65			 15	-
03: SR-209 & SR-210 04: Project Access & SR-210	90 22			138 -			 33	

HALES DENGINEERING

SimTraffic Queueing Report Project: Sandy La Caille TS Analysis: Future (2025) Plus Project Time Period: Moming Peak Hour 95th Percentile Queue Length (feet)

Pro	iect #	: UT:	20-170	l

	NB		NE			W		SB		SE		EB			WE	
Intersection	TR	L	LTR	R	L	Т	L	т	Т	TR	L	R	TR	L	LR	т
01: SR-210 & Wasatch Boulevard		1.000		2000		1000		301		1000	402	661				10.603
02: Wasatch Boulevard & La Caille Access	2				1.000		34		-				-		34	
03: SR-209 & SR-210		114			1.000	1.000							203	62		37
04: SR-210 & La Caille Lane		1.000		-	46	34			75	21	35	25				
05: P1 Out & SR-210		1.000		39												
09: P5 & La Caille Lane	100	100	20		-	-	-	-						-		-

HALES DENGINEERING

SimTraffic Queueing Report Project: Sandy La Caille TS Analysis: Future (2050) Plus Project Time Periot: Moming Peak Hour 95th Percentile Queue Length (feet)

Project #: UT20-1706

		NB		NE			NW			SB		SE		EB			WE	
Intersection	L	т	L	LTR	R	L	R	т	L	т	Т	TR	L	R	TR	L	LR	
01: SR-210 & Wasatch Boulevard	38	159	1000		-	-				258	-	1000	381	214			1000	1.00
2: Wasatch Boulevard & La Caille Access									46						-		41	
03: SR-209 & SR-210	100		165		30	1.000					-				331	93		57
04: SR-210 & La Caille Lane		-	1.000			50		44			81	19	35	23				-
5: P1 Out & SR-210	-	-	1.000		42		8											-
09: P5 & La Caille Lane	1000		100	20	-	122		-		- 22			1000	222		- 22	1220	

COMMENT #:	13315
DATE:	9/2/21 9:40 PM
SOURCE:	Website
NAME:	Gay Lynn Bennion

COMMENT:

To: UDOT LCC EIS Consultant Team September 2, 2021

Dear UDOT Personnel and Consultant Team,

We appreciate your time-intensive and thoughtful approach to resolving the critical issue of managing the vehicle over-crowding of Little Cottonwood Canyon. The canyon is a treasured destination for our Wasatch Front constituents and millions of out-of-state visitors alike through all seasons of the year. Sadly, we all recognize we are "loving our canyon to death." We need to provide the public with a sustainable, cost-effective, inclusive, and reliable transportation solution that also enhances the experience of canyon visitors. (32.1.2B)

The stated purpose of the EIS, "to provide an integrated transportation system that improves the reliability, mobility and safety for all users," does not account for the fact that the canyon is a place for environmental preservation and solitude, as well as recreation of all kinds. (32.1.2B) If this project becomes about moving more people in and out of the canyon at faster rates, then we are not "preserving the values of the Wasatch Mountains." Both of the currently "preferred alternatives" are problematic. Both would result in significant environmental impacts that endanger our watershed and fail to address the year-round needs and access for all recreational interests, including those of underserved populations. (32.20A, 32.20C, 32.2.9C, 32.2.9E, 32.4I, 32.12A, 32.12B, 32.1.2C, 32.1.2D, 32.5A)

We do not support the proposed gondola option as it is costly and caters mostly to the ski resorts at the top of the canyon and ignores the many and varying year-round recreational interests throughout the canyon that also must be addressed. Furthermore, the "Enhanced Bus Service in Peak-Period Shoulder Lane (PPSL)" alternative as proposed would inflict an unacceptable level of costly environmental impacts by expanding the road and adding snow sheds in some places. (32.1.2C, 32.4I, 32.2.9J, 32.7B, and 32.7C)

We believe a third option exists: one that is less expensive; less environmentally impactful; more inclusive; and could be more quickly implemented. We support a modified Enhanced Bus Alternative that takes a phased approach. **(32.2.9A and 32.2.9R)** This alternative would involve the following:

- NOT widening the existing road to add a shoulder lane, except at certain points needed for making stop areas more efficient. (32.2.9A)

- NOT constructing snow shed overhangs which will be costly and unnecessary as roads can be managed with normal snowplow clearance. (32.2.9J)

- Implement tolling and, at certain times, restrictions on single-occupancy vehicles, along with bus-only access at designated times to reduce vehicle traffic. **(32.2.4A)**

- Busses should use the cleanest, most efficient technology possible to minimize emissions, and provide year-round service and enhance access to all areas of the canyon as a reliable alternative to private vehicles. (32.2.2B)

- Enforce parking violations and provide better information systems for canyon users. (32.2.2M) This approach would allow us to proceed relatively quickly with an incremental plan that increases access and convenience for all recreational interests year-round in a manner that is fair, sustainable, and which preserves some of the solitude and environmental integrity of the place. It would also minimize costly and potentially destructive environmental impacts to the canyon, and prioritizes the preservation of our

critical watershed - the source of our public drinking water - which is in the best long-term interests of our state. (32.2.7C, 32.1.2C, 32.4I, 32.12A, and 32.12B)

We appreciate your consideration of this modified alternative,

Signed,

State Representative Gay Lynn Bennion State Representative Joel Briscoe State Representative Clare Collard State Representative Jennifer Dailey-Provost State Representative Suzanne Harrison State Representative Sandra Hollins State Representative Carol Spackman Moss State Representative Doug Owens State Representative Stephanie Pitcher State Representative Angela Romero State Representative Elizabeth Weight

COMMENT #:	13316
DATE:	9/3/21 6:30 AM
SOURCE:	Email
NAME:	Lindsey Madsen

COMMENT:

All,

Please find attached a letter from Sandy City Mayor and Sandy City Council, in response to the Little Cottonwood Canyon EIS for potential transportation improvements.

Thank you, Lindsey

SANDY CITY ADMINISTRATION

KURT BRADBURN MAYOR

MATTHEW HUISH CHIEF ADMINISTRATIVE OFFICER

Utah Department of Transportation Little Cottonwood Canyon EIS c/o HDR 2825 East Cottonwood Parkway, Suite 2000 Cottonwood Heights, Utah 84121	
To Whom it may concern:	
These comments are submitted on behalf of Sandy City in response to the Utah Department of Transportation draft Environmental Impact Statement prepared for potential transportation improvements within Little Cottonwood Canyon. In that draft EIS, UDOT has identified two preferred canyon transportation alternatives: enhanced bus service (with roadway widening); or a gondola.	
1. Sandy City does not presently support or oppose either of the proposed alternatives. We recognize that there are pros and cons to each of the proposals, and depending upon how the selected transportation plan is implemented, either alternative could have significant long term consequences for Sandy City. We continue to support the goals of the Mountain Accord and the completion of a visitor use capacity study for Little Cottonwood Canyon.	32.20B
 We also want to reiterate our concerns about several key priorities for Sandy City, regardless of which transportation alternative is ultimately selected, and how the implementation of the selected transportation mode may impact the City. 	
a. Water quality. Protection of the Little Cottonwood Canyon watershed is our top priority. We believe that getting people into the canyon is secondary to getting safe and clean water out of the canyon. On any given day, Sandy City receives 100% of its water from Little Cottonwood Creek, and the water flowing past the ski resorts may arrive at Sandy City taps in as little as 4 hours. Regardless of which transportation alternative is selected, every precaution and best` management practices must be used to minimize any negative impact to the stream and the watershed, both in the design and construction of the transportation improvements.	32.12A 32.12B
b. Connection to the Sandy City transportation system. We believe that UDOT's current study is inadequate alone because it only focuses on Wasatch Boulevard (from the north) and the Little Cottonwood Canyon road. Any canyon transportation system selected will not be successful unless it also analyzes and considers any traffic improvements needed to connect to that system, with improvements to 9400 South, Wasatch Boulevard (from the south), and the parking/mobility hub located at 9400 South and Highland Drive. While we support and acknowledge the need to study and plan for canyon transportation improvements, we also request that UDOT immediately initiate a corresponding study of the transportation improvements that will be needed within Sandy City.	32.7E
10000 Centennial Parkway Sandy, Utah 84070- 414 8 p: 801.568.7100 sandy.utah.gov	

c. Getting cars off the road and reducing congestion. Regardless of which canyon transportation mode is selected, we believe that UDOT should immediately explore and implement other available means to incentivize the use of alternate transportation methods, such as tolling, elimination of roadside parking, charging for parking at the ski resorts, limited hours of access for private vehicles, increased frequency of bus service, variable traffic lanes, allowing any ski pass to be used as a transit pass, etc. These canyon transportation strategies can and should be utilized immediately, as a "first phase" of the transportation strategy, even before the long term canyon transportation mode is designed and constructed.

d. **Improve the experience of canyon visitors.** In addition to transportation improvements, we should also focus our collective efforts to enhance the overall experience for visitors, not just with facilities and amenities at the ski resorts and in the canyon, but also in the surrounding communities.

Thank you for your consideration of these issues. We look forward to continued dialogue with UDOT as we work together to address these important priorities.

Kurt Bradburn Mayor, Sandy City

Alison Stroud Chair, Sandy City Council

32.29R, 32.2.4A, 32.2.9O, 32.2.9P, 32.2.2D, and 32.2.2K

COMMENT #:	13317
DATE:	9/3/21 11:19 AM
SOURCE:	Email
NAME:	Chris Adams

COMMENT:

Hello,

Attached please find the joint comment for the UDOT Draft EIS for Little Cottonwood Canyon from Wasatch Backcountry Alliance & Winter Wildlands Alliance. Please confirm receipt of this email so we know our comment has been received.

Thanks, Chris

September 3, 2021

Little Cottonwood Canyon EIS Team c/o HDR and the Utah Department of Transportation 2825 East Cottonwood Parkway, Suite 200 Cottonwood Heights, UT 84121 LittleCottonwoodEIS@Utah.gov

Dear LCC EIS Team and Decisionmakers,

Wasatch Backcountry Alliance (WBA) is the collective voice for human-powered individuals and organizations who recreate in and share a love of the natural wonders and priceless recreational opportunities in the backcountry of the Central Wasatch. Winter Wildlands Alliance (WWA) is a national alliance of grassroots organizations, environmental advocates, backcountry skiers and snowboarders, and individuals who are devoted to protecting, preserving, and sharing access to quiet places in the mountains.

We appreciate the extended opportunity to carefully review and provide actionable comments (Attachment A) on UDOT's draft Environmental Impact Statement (EIS) document and proposed/preferred alternatives, with references to the EIS itself and our comments as to the issue with that section. We also included our more general impressions, preferences and concerns as provided in this transmittal letter. Our simple, core mission and interest is to preserve and protect the beauty and wonder of the Central Wasatch, and the quality of people's access to and experiential opportunities therein, and to participate in this community effort to identify a solution that meets the stated purpose and need of the EIS for this project.

WBA and WWA firmly believe that before any transportation system is selected there must be a thorough analysis of the purpose and need of the entire tri-canyon transportation system, as well as the overall carrying capacity of the Cottonwood Canyons and Millcreek. This will help establish the volume of people that needs to be moved by the system, which will in turn help determine which transportation system best fits that purpose and need. We implore UDOT, the Central Wasatch Commission, the US Forest Service and Salt Lake County to undertake a

32.1.1C

purpose and need assessment for the tri-canyon area in total as well as an LCC carrying capacity analysis that would be used as a baseline by the various stakeholders for decision making. As we consider the best solution to the traffic problems in Little Cottonwood Canyon, it's important that decisions are based on facts and are clear of political or private business bias. The outcome of UDOT's process will be expensive, costing every Utahn nearly \$200 each in taxpayer dollars. The wrong solution threatens to spend hundreds of millions of dollars toward an alternative that may not alleviate the current traffic issues, and in the case of the gondola,	32.1.1C 32.20B 32.7B, 32.7C,
would permanently scar the canyon.	32.17A, 32.2.9E
UDOT's first option is an enhanced bus service, with road widening and installation of avalanche sheds. UDOT correctly states the bus option is the best for improved mobility. The second is a gondola that stretches from the canyon entrance to Alta, includes snowsheds and road modifications, an option which UDOT says will result in improved reliability. We strongly disagree with this assertion, and think the reliability of the gondola has been overstated.	32.2.6.5K
To be blunt: the gondola is not an effective transportation solution. It's a purpose-built ski lift serving to primarily boost the profits of a few private companies. By only operating during the	32.1.2B, 32.1.2E 32.2.7A, 32.7B,
winter ski resort season, the gondola will not help address the very real traffic issues in the summer, nor will it stop at any dispersed trailheads, even the wildly popular (and very crowded)	
White Pine. This means if you want to avoid driving your car to any other trailhead, take in	32.7C, 32.2.6.5F
Alta's July wildflowers or Snowbird's Oktoberfest, the gondola will sit as a mocking, idle eyesore on its 200-foot towers as you are forced to continue driving your car. As if that is not enough, it	32.1.2C, 32.2.6.
is also being touted by its supporters as a tourism tool in and of itself, which seems to have been adopted by UDOT yet was not a specific component of the original Purpose and Need.	32.1.2B
If the goal of the EIS is to improve both reliability and mobility in LCC, travel times for each alternative is important in selecting a solution that will get people out of their cars to ride	
public transit. UDOT estimates the gondola will take 55 to 59 minutes to ride, as compared to 38 minutes to ride the bus, and 36 minutes for private vehicles. Limited gondola station parking	32.2.6.4A
and fees will force many to park at a distant parking lot to take a bus to the base station, all before stepping onto the gondola. Riding the gondola means people will arrive up to 23 minutes later than all other alternatives (even later for those who need to take the additional	32.2.6.5J
bus to the base station). Additionally, riding the gondola requires at least one transfer and possibly two, depending on where people park. Families with children or people with a lot of gear will see this as a major inconvenience, which will in turn deter use. This is not a commute to work for most of the intended users; it's a system used by people who have limited time to recreate and are competing for scarce resources. Therefore, adding complexity – and potential costs – to canyon travel will not necessarily incentivize them to leave their car to ride the gondola, knowing the challenges that go with it and the fact that they'll arrive 20-30 minutes later than all other options.	32.2.4A
UDOT says the gondola is the most reliable option during high avalanche danger. However, the	32.2.6.5H
gondola will not run every time avalanche teams use artillery for avalanche control, and when	32.2.6.5K

resume. Further, when avalanche conditions are very high and an interlodge order is in effect (all canyon users legally required to be inside), the gondola will not run. Storms with high wind/lightning/ice events, mechanical issues/power outages may also stop the gondola. With the variety of conditions that will stop the gondola, the purported reliability advantage is eroded.

We need solutions now. Adding more buses to the existing roadway can be more quickly implemented, while providing more long-term flexibility. WBA and WWA firmly believe that buses can be successful without widening the road if UDOT employs other traffic-control methods to restrict/reduce vehicle traffic on Hwy 210. Expanded bus service that picks people up from numerous locations across the valley, ie. downtown, U of U, Olympus Cove, Sandy City, etc., that is closer to "door-to-door" would be more efficient than forcing people to park at one of two transportation nodes, and would in turn encourage use and alleviate near-canyon traffic issues. UDOT was tasked and funded by the Utah State Legislature to explore tolling/paid parking for private vehicles, yet the Draft EIS did not address this concept in detail. When UTA added more buses two seasons ago with an increase in funding from the state and the community, those buses were utilized. Tolling vehicles, adding more buses, giving priority to buses during peak usage, and more comprehensive enforcement of the personal-car tire traction policies is a combination that addresses the problem at lower costs and is a shorterterm, scalable, mutable solution that can be adaptable as citizens' usage changes over time. Some people roll their eyes at buses, but Utah has never invested enough resources to make the canyon ski bus system truly effective. UDOT now has the opportunity to change that. And unlike GondolaWorks, UTA is not allowed to make flashy videos about bus service or openly lobby decision-makers about why their solution should be selected.

Addressing the traffic issues plaguing the Central Wasatch is a once in a generation opportunity. We thank UDOT for its efforts and consideration of input from Wasatch Backcountry Alliance and the Winter Wildlands Alliance. Please do not hesitate to contact us if you have any questions or would like to discuss further.

Respectfully,

Christopher Adams

Todd Walton

Chris Adams Board President Wasatch Backcountry Alliance Todd Walton Executive Director Winter Wildlands Alliance 32.2.7C, 32.2.6.3D 32.2.9A 32.2.2I 32.2.4A 32.2.9A, 32.2.4A, 32.2.2M

ATTACHMENT A¹

Tabulation of Comments with DEIS Citations and Impact on the Analysis & Decision Document

COMMENT	DEIS CITATION	IMPACT
ENVIRONMENTAL JUSTICE. The EJ	5.3.2	The preferred alternatives are
and public outreach methodology		likely to create additional barriers
used in the draft EIS is inadequate. It		to LCC access by EJ populations
appears as the EJ impact analysis area		who currently recreate in LCC.
missed obtaining critical input from EJ		Traditional EJ analysis
individuals and populations that use		methodologies for transportation
LCC, but do not live anywhere near		projects are inadequate to obtain
the canyon or canyon mouth.		meaningful input and data to
		assure new barriers are avoided.
LIMIT SKIERS. This alternative	Table 2.2-9	Our review could not locate
evaluates the effect of limiting skier		sufficient details in the document
numbers in lieu of making roadway		to indicate how utilizing all of these
improvements. This considered		strategies would have no positive
limiting ticket sales, a vehicle		effect. These conclusions are
reservation system, a high toll,		confusing and insufficient.
parking fees as a function of		Requesting clarity as to if the
occupancy, odd-even plate days, and		strategies were evaluated
canyon closures as a function of		individually, or in the aggregate?
parking capacity. The document		
states these strategies would not		
reduce peak-hour congestion.		
RECREATION RESOURCES IN THE	Table 4.3-1.	The document is inconsistent
COMMUNITY IMPACT ANALYSIS		where it relies on information from
AREA. Acreage or miles in Analysis		two participating agencies on the
Area for backcountry is listed as "Not		topic of a trailhead important to
available." The entire length of SR		our dispersed user group. Which is
210 should be listed as mileage in		it? Does the access exist or not?
analysis area for backcountry terrain		Our members can assure it does,
accessible from SR 210. The		historically. UDOT and the USFS
alternatives will clearly impact		should get together and align on

¹ These public comments have been prepared based on a multi-disciplinary, team-wide review by Board members of the Wasatch Backcountry Alliance and Winter Wildlands Alliance, in the context of its primary mission and member interests. They have also been prepared with an eye to those comments which could provide new or corrected facts, new or corrected assumptions, or to point out concerns with methodology (inconsistencies, imbalance, thoroughness) where those findings could potentially impact decisions around alternative selection and implementation. We welcome the chance to discuss or elaborate further on these comments if that would inform your analysis and decision. 32.5B

32.2.2K

32.4W

parking and access, as stated in the			
parking and access, as stated in the		whether there's a trailhead in	
document.		upper LCC because according to	
		UDOT in this section there is.	32.4X
		Albion Meadows Trail (USDA Forest	
		Service Trail 1006). This trail	
		extends due south from S.R. 210	
		just west of Albion Basin Road.	
		Access is from the paved Albion	
		parking lot at Alta ski resort. Little	
		Cottonwood Canyon Alta-Brighton	
		Trail (USDA Forest Service Trail	
		1007). This trail extends north of	
		S.R. 210 across from the Albion	
		Meadows Trailhead.	
LAWS AND REGULATIONS RELATED	Table 12.2-1	However, the analysis fails to	
TO WATER QUALITY. We concur with		adequately weigh the true	
the assertions made in previous		importance of drinking water to	00 404 00 40
public comments by Salt Lake City		this community. When compared	32.12A, 32.12
Public Utilities regarding the		to the winter traffic congestion	32.20A, 32.20
importance and legal precedence		issues addressed by this DEIS	,
around the protection of our urban		process, the long-term availability	32.20C
water supply. The DEIS presents a		of potable water supplies is far	
thorough and comprehensive		more critical to preserve than any	
presentation of all relevant rules and		inconvenience represented by our	
regulations, and lays out with		inability to solve our traffic and	
conventional analyses how the		parking challenges. Recent	
preferred alternatives can be		weather events and trends seem to	
constructed and operated without		underscore this distinction. The	
impacting the water supply source.		DEIS fails to adequately consider	
impacting the water supply source.		the indirect and cumulative effects	
		of accommodating more and more	
		uses in LCC, without regard to any	
		environmental capacity limitations,	
		such as pressures and impacts to	
		our drinking water supply.	
ROADWAY SAFETY. A significant	1.4.3.2.3	The document acknowledges this	
factor leading to traffic congestion	1.4.3.2.3	contributory problem, but does not	32.2.2M
and reflective of the project Purpose		adequately evaluate the potential	_
and Need, is the importance of winter		for policy and enforcement	
traffic flow and reliability. UDOT and		enhancements to contribute	
SLCO have made strides in recent		substantively toward meeting the	
years with the adoption of various		purpose and need.	
traction laws and requirements. The		parpose and need.	
riaction laws and requirements. The			
DEIS presents useful data and			1

acknowledges the role of weather- related traffic impacts, but does not analyze for enhanced traction enforcement or related solutions.		
SKIER RESERVATION SYSTEM. This section analyzed a system similar to that which Snowbird implemented in 2020. The document concludes that such a system "would not reduce peak-period traffic.	2.2.4.2	This finding is counter to that which our members observed last year. We believe this program resulted in many patrons arriving later in the morning as they knew they had a guaranteed parking spot, thereby lessening traffic in the peak-period traffic hours. Our review could not find the necessary details or related assumptions upon which this finding is asserted. Further, even though UDOT does not have the authority to require the ski areas to implement such a system, the very existence of a gondola alternative which primarily serves the ski area indicates there is a will and means to compel the ski areas to cooperate and consider a range of alternatives that would meet the common interest around the purpose and need.
REGIONAL. The Central Wasatch Mountains and canyons (Millcreek, Big Cottonwood, and Little Cottonwood) are a unique recreation amenity close to a major metropolitan area. A survey conducted by the University of Utah (2015) for the Central Wasatch found the following: 65% of the respondents said that recreating on public land plays a large role in their physical and mental well-being. This response represents our membership precisely.	4.3.2.2.2	The selected alternative should not create barriers that do not currently exist for access and use of public lands by dispersed users, without adequate impact analysis. This is particularly important for environmental justice user populations as mentioned elsewhere in this public comment document.
LAND USE. This analysis concludes that the projected demand increase will likely necessitate that developed ski areas may want to add "lift	20.4.2.2.1	By deferring any consideration of the indirect and cumulative impacts of encouraging more visitation on the ski areas, - and the

32.2.2K

32.4A, 32.4B, 32.4G, 32.4P, 32.5A

capacity," "other facilities," and "lodge capacity." The document suggests this does not require indirect analysis, as it can be considered in later agency master planning processes. This is a clear and direct violation of the obligation to not partition projects, and avoid consideration of indirect and cumulative impacts in this decision making document.		resulting expansion of the ski area facility footprint - this DEIS is inherently unable to adequately consider all related impacts. The document seems to "serve up" to the benefit of the ski areas a basis to allow the USFS to approve future expansion, without the burden of considering impacts in this decision document.	32.20
RECREATION WINTER. This section of the indirect effects analysis, again, correctly assumes increased visitor numbers, and the predictable need and allowability (even obligation?) for the ski areas to accommodate that growth - but there is no analysis or consideration of that in the decision document. The basis for not including that - "it isn't certain" - is an unacceptable basis for such a central item.	20.4.2.2.2	By deferring any consideration of the indirect and cumulative impacts of encouraging more visitation on the ski areas, - and the resulting expansion of the ski area facility footprint - this DEIS is inherently unable to adequately consider all related impacts. Again, the document anticipates a partitioned impact and project remedy (facility expansion) will likely be reviewed by the USFS and approved, without the burden of considering impacts in this document.	32.20
TOLLING. We concur that backcountry skiers would be negatively impacted in the morning (7 AM to 10 AM) for access to the upper part of Little Cottonwood Canyon since the bus service would service the resorts only, causing backcountry skiers who use the bus to walk greater distances to access trails. Our organization does not oppose tolling strategies, unless dispersed users are inequitably singled out.	4.4.2.2.3 and 4.4.2.5.2	Walking long distances on pavement to access dispersed public land areas is counter- intuitive and counter-productive to human-powered recreation. It can be done, but this impact should be avoided or minimized unless a similar barrier is presented to developed ski area users.	32.4`
WINTER VISITATION. This analysis underestimates the projected visitation. Ski industry trends have consistently reported growth for the last several years. The reliance on 2017-2018 data is likely to result in an	20.4.1.2.1	By underreporting use, impacts, and failing to base the analysis on future growth potential, there is a risk of over-reporting the alternatives ability to meet the Purpose and Need. The fact that	

Sept 2022

underestimate of future projections. Further, this entire analysis disregards dispersed canyon users. Lack of data is an insufficient basis to underreport user impacts. More than 14,000 paper copies and an estimated 6,000 digital app versions of the Wasatch Backcountry Skiing Map (Achelis, 4 th Ed., 2019) have been sold, among millions of dollars in backcountry tools and gear. This represents powerful evidence of the scale and value of dispersed recreationists in LCC. Our respective organizations enjoy and inform over 30,000 followers on social media and via email communications.		ski area user data is more readily available than dispersed user data should not result in an analysis that leads to an alternative that is arguably biased to one user group. As further evidence of the intrusion of the gondola alternative on dispersed users, one of our backcountry enthusiasts has prepared a draft map showing the proximity of the proposed tower locations to wilderness areas and existing trails used by human powered recreationists (Attachment B). Based on this map, WBA conservatively estimates that more than 30 backcountry ski runs in LCC will be negatively impacted if the gondola solution is	32. 32.
The two solutions provided are focused on peak usage on weather- compromised days, despite the fact that actual peak usage on storm days are relatively rare events. This is akin to oversized parking lots to account for Black Friday and the day after Christmas. A massive public expenditure to account for these outlier events without taking into account the vast majority of "down days" has no accounting in the document.	Chapter 23	implemented. A more thorough analysis is required. This Chapter avoids the obvious issue of "irreversible and irretrievable" loss of fiscal resources. If this community invests in either of the preferred alternatives – which arguably address traffic and mobility in only a limited scope and scale regionally – the community is in a significantly weaker fiscal position to address regionally critical growth challenges.	32.
GONDOLA VIEWSHED. We concur that the gondola would "have a negative impact for dispersed recreation occurring beyond the ski areas because of long-term changes to the viewshed, that "recreating in Little Cottonwood Canyon near the gondola system (towers and cabins)	4.4.4.2.2	The document asserts – in an inappropriately equivalent manner – that some "residents" would find the gondola as disruptive to the natural setting of the area and its rural nature, while "some residents" who recreate in Little Cottonwood Canyon might see the	

will detract from LCC views, and result in a "reduced outdoor recreation experience".		location as a benefit because they would live within walking distance of the station. This statement is misleading and unhelpful to the analysis, as the number of individuals passing by this area and accessing these impacted viewsheds far exceeds the total number of residents in close	32.174
		proximity to the gondola access point. An impression of equivalency is suggested which is inappropriate and biased.	
TRAILHEAD PARKING ALTERNATIVES All alternatives reduce total canyon parking available for dispersed users, and no reasonable mitigation is suggested. An inadequate number of new parking spaces is suggested at Tanners (when other access is eliminated, users will quickly overwhelm the few spaces provided). Tanners, White Pine, Coal Pit and the Great White Icicle winter climbing area are very popular and traditional access points that will be effectively.	4.4.2.5	The impact from lost access will disproportionately impact dispersed users throughout the year. Imagine if one of the preferred alternatives was installed to accommodate ski area access, and then taken away. That is the effect of these lost access points on dispersed users. This impact will be devastating to backcountry users.	32.4P
access points that will be effectively eliminated. WASATCH BLVD. & HWY 210. We share the concern and interest of community residents who place a high value on natural open spaces and the views of the surrounding undeveloped mountains. Protection of streams, natural vegetation, open spaces, and scenic views with ridgeline protection measures is important to both residents and our constituency.	4.3.2.1	The value of these views is hard to quantify, but it must be attempted in order for the analysis to be based on a fair and balanced consideration of project impacts. Evidence of this value can be found in real estate, State investments in tourism, and indirect economic impacts across ALL user groups, not just developed ski area users.	32.1.2 32.290
VISUAL RESOURCES. The visual impacts section uses several standard assessment tools to rationalize making the visual impacts of gondola alternatives and the	Chapter 17	While the document authors have cited standard methods, we are concerned that no tool exists that could adequately evaluate gondola infrastructure from all the	

	10	viewpoints that dispersed users do		snowsheds/enhanced bus alternatives
		access.		somewhat equal. This results in the
		The selection of KOPs (Key		perception that the visual intrusions of an aerial structure and the visual
32		Observation Points) and the		intrusions of the snowsheds plus an
		interpretation of how the		additional lane are roughly equal.
32		alternatives would affect the		succionariane are roughly equal.
32		viewshed are subjective. This		
		section uses a convincingly		
32	n	objective analysis matrix based on		
	20.	subjective base data to support		
		conclusions which make the two		
		alternatives largely equal in		
		impact. If the gondola is favored		
	e	over the enhanced bus, it could be		
		argued – inappropriately in our		
		opinion – that the former is no		
		more visually intrusive than the		
		latter. We believe the visual		
		impact of any overhead structure		
	4.82	as viewed from the road would be		
	ai	significantly greater than the visual		
	_	intrusions of the snowsheds and the additional lane as viewed from		
		the road – the perspective of most		
		visitors at least for now.		
		Ownership will largely be	17.4.1	VISUAL METHODOLOGY. In this
	r	transparent to any dispersed user		section the point is made that the
		from a variety of viewpoints.		FHWA can affect a land transfer from
32	y	Visitors to LCC will be impacted by		the USFS to FHWA, to UDOT that
32		any infrastructure that is		would make the issue of visual
	s	constructed, no matter where it is		standards – the USFS SIOs, moot.
		located and who owns the land		
	¥	after a transfer. A change in ownership would at the very least		
		represent an indirect visual impact,		
		and/or a cumulative impact, which		
		has not been evaluated.		
	ot	The standard methods used do not		
		appear to be designed to assess		
	on	the impacts of aerial transportation systems. If mis-applied, this		
		I Systems IT MIS-applied This	1	

HAZARDOUS WASTE IMPACTS. The presence of hazardous waste site conditions at Gondola Alternative B's La Caille location is well documented.	Figure 16.3.2	However, the document does not appear to adequately factor the potential exposure risks (air and water, temporary and ongoing) that could result from a large-scale disturbance of these impacted soils.	32.16
FOREST PLAN AMENDMENTS. USC 23 section 317 allows the FHWA to acquire right-of-ways on forest lands. This would be necessary for the additional roadway right of ways.	Chapter 28 USC 23 Section 317	We note that while conventional takings, easements and exchanges are normal and common along roadway rights of way, we are curious if the code anticipates and was intended for such a broad interpretation as to accommodate a resort/tourist amenity such as the gondola? If such a transaction is complex, the document and analysis should analyze the impacts of that more substantively for cost, policy implications, and schedule impacts.	32.28
		portion of the analysis may be flawed in that it doesn't adequately assess the visual impacts of ground to air and it can't adequately address the visual impacts of air to ground. NONE of the KOPs use an aerial perspective so that analysis is missing.	32.17

Backcountry Use & Tower Proximity Map (C. Johnson – DRAFT)

COMMENT #:	13318
DATE:	9/3/21 11:22 AM
SOURCE:	Email
NAME:	Eric Murdock

COMMENT:

Access Fund, America's national climbing advocacy organization and Gate Buttress lessee, appreciates the opportunity to submit the attached comments on the UDOT Little Cottonwood Canyon EIS. Thanks in advance for your consideration and feel free to reach out to me with any questions. Best,

September 3, 2021

Little Cottonwood Canyon EIS Utah Department of Transportation c/o HDR 2825 E Cottonwood Parkway, Suite 200 Cottonwood Heights, UT 84121

RE: Access Fund Comments regarding Little Cottonwood Canyon Transportation Alternatives Draft Environmental Impact Statement

UDOT Planners,

The Access Fund welcomes this opportunity to provide comments to the Utah Department of Transportation's (UDOT) Little Cottonwood Canyon (LCC) Draft Environmental Impact Statement (DEIS). The Wasatch Mountains and Little Cottonwood Canyon in particular host nationally significant climbing resources that have a long history and attract visitors from all over the world, contributing significantly to the local economy. The Access Fund is concerned that the narrowly conceived preferred alternatives for this DEIS focus far too much on the needs of two ski areas at the head of Little Cottonwood Canyon at the expense of dispersed recreational users who visit the entire canyon. Access Fund and Salt Lake Climbers Alliance are lessees for 140 acres in LCC.¹ The parcel, known as the Gate Buttress, is about one mile up LCC canyon and has been popular with generations of climbers because of its world-class granite. These unnecessary proposals would destroy climbing resources, significantly impair the canyon's natural experience, limit parking and damage trails in a highly popular recreation area (including Gate Buttress), and otherwise reduce access opportunities for underprivileged people with limited financial means.

The Access Fund

The Access Fund is a national advocacy organization whose mission keeps climbing areas open and conserves the climbing environment. A 501(c)(3) nonprofit and accredited land trust representing millions of climbers nationwide in all forms of climbing—rock climbing, ice climbing, mountaineering, and bouldering—the Access Fund is a US climbing advocacy organization with over 20,000 members and 131 local affiliates. Access Fund provides climbing management expertise, stewardship, project-specific funding, and educational outreach. Utah is one of Access Fund's largest member states and many of our members climb regularly in Little Cottonwood Canyon. For more information about Access Fund, visit <u>www.accessfund.org</u>.

¹ See:

https://www.accessfund.org/news-and-events/news/climbers-partner-with-lds-church-on-stewardship-of-little-cotton wood-canvon-climbing

32.1.2B, 32.1.2D, 32.2.7A, 32.7A, and 32.7C

32.4A, 32.4B, 32.4I, 32.4N, and 32.4P

The Access Fund supports the position of the Salt Lake Climbers Alliance (SLCA),² and hereby incorporates their comment letter by reference into our comment letter. Specifically, we endorse SLCA's proposal that before any permanent changes are made to Little Cottonwood Canyon, a new alternative must be considered that is based on an expanded bus service coupled with traffic mitigation strategies and addresses the needs of dispersed recreation. The DEIS's highly destructive Preferred Alternatives should only be considered after less impactful options have been implemented and shown not to be effective. The climbing resources that will be damaged by these proposed alternatives are highly significant and valued by local climbers and climbers visiting from around the country.

Little Cottonwood Canyon Climbing History

Climbing and mountaineering in the United States has a long and storied history, originating with Native American explorers who summited alpine peaks and scaled canyon walls, on through Anglo-European adventurers who scaled summits in the Sierra Nevada and Rocky Mountains in the 1800s such as Cathedral Peak, Longs Peak, and the Grand Teton. Into the 1900s gear and skill progressed, ushering in more technical and daring ascents on larger climbs in Yosemite and mountain ranges throughout the Rockies, Sierras, Cascades and Alaska. Many highly technical climbs were also achieved by the mid-1900s at places like the Shawangunks, NY and Devils Tower (Bear Lodge), WY, among others. By the 1950s and 1960s Yosemite's El Capitan and Half Dome were climbed as well as the Diamond on Longs Peak and the Great White Throne in Zion National Park. By the 1970s, climbers were simultaneously climbing at much higher technical grades while also moving towards a "clean climbing" ethic.

Since at least the 1950s many climbs were established in Utah's Wasatch Mountains, especially on the high-quality granite found in Little Cottonwood Canyon,3 which became the training ground for a local group of climbers known as the Alpenbock Climbing Club. Especially during the 1960s, the Alpenbock Climbing Club was a prolific source of first ascents, scaling many routes that remain classics today including The Coffin, the Wilson-Love Route, The Sail, S-Crack on the Thumb, and various routes on the Gate Buttress. Increasingly difficult routes were established from the late 1960s into the 1970s such as Dorsal Fin, Mexican Crack, The Green Adjective, Split Fingers, Butterfingers, and Fallen Arches were as difficult and high quality as any climbs in the country. Even more advanced climbs were established since the 1980s and beyond. As climbers worked through the grades, the interest in and popularity of bouldering also took hold in LCC, which boasts extensive bouldering areas such as 5 Mile Boulders, White Pine Boulders, Cabbage Patch Boulders, the Gate Boulders, the Secret Garden where the problem Copperhead (V10) can be found-a seminal climb in the experience of Nathaniel Coleman, a recent US silver medal winner in the 2021 Tokyo Olympics. All of the climbs listed here would be impacted in some way, either through direct destruction or by the industrialization of the area resulting from UDOT's preferred alternatives.

UDOT's Preferred Alternatives Will Cause Significant Damage to Climbing Resources

² See <u>https://www.saltlakeclimbers.org/lcc-udot-eis</u>.

³ See https://www.mountainproject.com/area/105739277/little-cottonwood-cany.on.

32.1.2B, 32.2.9A, 32.2.2PP, 32.2.6.3C, 32.2.4A

32.29R, 32.4A, 32.4B

32.4A, 32.4B, 32.26B, and 32.26E

2

transportation alternatives fail the needs of dispersed recreational users such as climbers, but also does a dis-service to under-privileged communities who may not be able to afford expensive ski tickets but want to visit their public lands especially in the lower canyon.32.5A, 32.26B 32.26EBy imposing additional financial costs, whether it be a toll, gondola fee, or bus fare, UDOTs proposals systemically disenfranchise lower income visitors (more likely to also be people of color) who wish to access LCC. This perpetuates wider environmental justice trends in which those of lower socioeconomic status and of racial and/or ethnic minority identities are not only more likely to be exposed to environmental hazards, but also have a harder time accessing environmental amenities.32.5ASummary of Access Fund positionAccess Fund positionAccess Fund supports the Salt Lake Climbers Alliance position related to UDOT's preferred alternatives, to wit:1) Access fund opposes the Enhanced Bus Peak Period (Shoulder Lane Expansion) Alternative that would result in the unnecessary destruction of many climbing resources.32.5A		
be impacted by the road-widening alternative "Boulders located within areas of direct impacts from roadway widening would be removed, destroyed, or buried by fill. Newly built trail segments lost to hillside cuts would be remouted." And 35 boulders and 142 problems would be impacted by the gondola alternative due to their location under the gondola alternative Mould be impacted by the gondola alternative due to their location under the gondola alternative Mould be reposed by motion being located inside the proposed park and ride station forchymit. Additionally, trailhead parking and access trails would also be significantly limited by these proposals, especially under the gondola alternative where the canyon itself would transform into an industrial atmosphere with new piles of construction debris, retaining walls, gondola towers, slope destabilization/crosion, forever degrading the unique and historic experience of climbing in LCC. Well before climbing became an Olympic event, the sport had been growing dramatically in popularity all across the country and in the Salt Lake City area, with as many as 30,000 estimated climbers visiting LCC every year. Multiple climbing gryms have sported up in every city across the country, olimbing guides are busy nearly everywhere, and even major Oscar-winning motion pictures feature climbers allinance not only would hundreds of bouldering problems be impacted, but basic access to various traitheads within the caryon would be limited to serve the needs of 2 ski areas at the top of the canyon. Not only do these limited transportation alternatives fills the needs of fiberses direcreational users such as climbers, but also does a dis-service to under-privileged communities who may not be able to afford expensive ski tickets but want to visit their public lands sepcially in the lower canyon. By imposing additional financial costs, whether it be a toll, gondola fee, or bus fare, UDOT's proposals systemically disentranchise lower income visitors (more likely to also be pople of colo		
popularity all across the country and in the Salt Lake City area, with as many as 30,000 32.6D estimated climbers visiting LCC every year. Multiple climbing gyms have sprouted up in every 32.6D Oscar-winning motion pictures feature climbing—all which contribute to the \$12 billion* 32.6D Unfortunately, UDOT's DEIS fails to recognize the importance of the climbing resource in 32.4A, 32.4B, LCC—with its rich history, high quality, popularity, and economic contributions. Indeed, 32.4A, 32.4B, according to analyses done by the Salt Lake Climbers Alliance not only would hundreds of 32.1.2D, 32.7(bouldering problems be impacted, but basic access to various trailheads within the canyon would 32.5A, 32.26B does a dis-service to under-privileged communities who may not be able to afford expensive ski 32.5A, 32.26B By imposing additional financial costs, whether it be a toll, gondola fee, or bus fare, UDOTs 32.5A By imposing additional financial costs, whether it be a toll, gondola fee, or bus fare, UDOTs 32.5A Summary of Access Fund position 32.5A Access Fund supports the Salt Lake Climbers Alliance position related to UDOT's preferred alternatives, to wit: 32.5A 1) Access Fund opposes the Enhanced Bus Peak Period (Shoulder Lane Expansion) 32.2.9C, 32.4/ Alternative that would result in the unnecessary destruction of many climbing resources. 32.2.9C,	be impacted by the road-widening alternative: "Boulders located within areas of direct impacts from roadway widening would be removed, destroyed, or buried by fill. Newly built trail segments lost to hillside cuts would be rerouted." And 35 boulders and 142 problems would be impacted by the gondola alternative due to their location under the gondola alignment/inside the easement, and/or being located inside the proposed park and ride station footprint. Additionally, trailhead parking and access trails would also be significantly limited by these proposals, especially under the gondola alternative where the canyon itself would transform into an industrial atmosphere with new piles of construction debris, retaining walls, gondola towers, slope destabilization/erosion, forever degrading the unique and historic experience of climbing in	
LCC—with its rich history, high quality, popularity, and economic contributions. Indeed, according to analyses done by the Salt Lake Climbers Alliance not only would hundreds of bouldering problems be impacted, but basic access to various trailheads within the canyon would be limited transportation alternatives fail the needs of dispersed recreational users such as climbers, but also does a dis-service to under-privileged communities who may not be able to afford expensive ski tickets but want to visit their public lands especially in the lower canyon. 32.4A, 32.4B, 32.12D, 32.70 (32.5A, 32.26B) (32.5A) (32.5	popularity all across the country and in the Salt Lake City area, with as many as 30,000 estimated climbers visiting LCC every year. Multiple climbing gyms have sprouted up in every city across the country, climbing guides are busy nearly everywhere, and even major Oscar-winning motion pictures feature climbing—all which contribute to the \$12 billion ⁴	32.6D
proposals systemically disenfranchise lower income visitors (more likely to also be people of color) who wish to access LCC. This perpetuates wider environmental justice trends in which those of lower socioeconomic status and of racial and/or ethnic minority identities are not only more likely to be exposed to environmental hazards, but also have a harder time accessing environmental amenities. 32.5A Summary of Access Fund position Access Fund position 32.5A 1) Access Fund supports the Salt Lake Climbers Alliance position related to UDOT's preferred alternatives, to wit: 1) Access Fund opposes the Enhanced Bus Peak Period (Shoulder Lane Expansion) Alternative that would result in the unnecessary destruction of many climbing resources. UDOT failed to consider a reasonable range of alternatives due to its purpose and need 32.2.9C, 32.44	LCC—with its rich history, high quality, popularity, and economic contributions. Indeed, according to analyses done by the Salt Lake Climbers Alliance not only would hundreds of bouldering problems be impacted, but basic access to various trailheads within the canyon would be limited to serve the needs of 2 ski areas at the top of the canyon. Not only do these limited transportation alternatives fail the needs of dispersed recreational users such as climbers, but also does a dis-service to under-privileged communities who may not be able to afford expensive ski	32.1.2D, 32.7C 32.5A, 32.26B,
Access Fund supports the Salt Lake Climbers Alliance position related to UDOT's preferred alternatives, to wit: 1) 1) Access Fund opposes the Enhanced Bus Peak Period (Shoulder Lane Expansion) Alternative that would result in the unnecessary destruction of many climbing resources. UDOT failed to consider a reasonable range of alternatives due to its purpose and need 32.2.9C, 32.44	proposals systemically disenfranchise lower income visitors (more likely to also be people of color) who wish to access LCC. This perpetuates wider environmental justice trends in which those of lower socioeconomic status and of racial and/or ethnic minority identities are not only more likely to be exposed to environmental hazards, but also have a harder time accessing	32.5A
alternatives, to wit: 1) Access Fund opposes the Enhanced Bus Peak Period (Shoulder Lane Expansion) Alternative that would result in the unnecessary destruction of many climbing resources. UDOT failed to consider a reasonable range of alternatives due to its purpose and need 32.2.9C, 32.4A	Summary of Access Fund position	
Alternative that would result in the unnecessary destruction of many climbing resources. UDOT failed to consider a reasonable range of alternatives due to its purpose and need 32.2.9C, 32.4A		
	Alternative that would result in the unnecessary destruction of many climbing resources.	32.2.9C, 32.4A
	⁴ See national Bureau of Economic Analysis report: <u>https://www.bea.gov/data/special-topics/outdoor-recreation</u>	,

statement being too narrow. Access Fund also opposes UDOT's Gondola Alternative that will also result in the unnecessary destruction of many climbing resources. Here again, UDOT failed to consider a reasonable range of alternatives due to its narrow purpose and need statement.

2) Access Fund opposes UDOT's proposed trailhead parking and access "improvements" for the Gate Buttress parking lot which would severely limit parking, while threatening roadside climbing resources and access trails. Access Fund, a lessee of Gate Buttress, would be significantly harmed by the proposed changes because the climbing experience at Gate Buttress would be measurably diminished. Access Fund believes that the purpose and need statement for UDOT's EIS is too narrowly defined and thus significantly limits the range of alternatives UDOT considered in the LCC DEIS including lesser destructive alternatives supported by Access Fund and SLCA, among others. Also, UDOT's U.S. Forest Service partner also fails to meet its obligations under the National Environmental Policy Act by seeking to make decisions based on a Forest Plan that is nearly 20 years old.

*

*

Access Fund urges UDOT and its partners to reconsider its range of alternatives and analyze the needs of the dispersed recreation community as well as for potential visitors with limited financial means. We support an alternative analysis based on enhanced bus service combined with other traffic mitigation strategies. The preferred alternatives offered by UDOT address a traffic problem primarily focused on the 30 busiest days during the winter ski season. This DEIS must address the transportation needs in the canyon year-round for all users.

Sincerely,

the len

Chris Winter Access Fund Executive Director

Cc: Salt Lake Climbers Alliance

32.1.2D, 32.5A, 32.2.9A, 32.2.4A,

32.1.2H, 32.2.9E

32.4N, 32.1.2H

32.28C

32.1.2C

4

COMMENT #:	13319
DATE:	9/3/21 11:36 AM
SOURCE:	Email
NAME:	Margaret Bourke

COMMENT:

Please find attached my comments on the referenced DEIS.

Margaret Bourke	
Josh Van Jura, EIS Project Manager Executive Director Carlos Braceras	
Utah Department of Transportation	
4501 South 2700 West	
Salt Lake City, UT 84114	
Dear Messieurs Van Jura and Braceras	
Thank you for the opportunity to comment on the Draft Environmental Impact Statement (DEIS)prepared by Utah Department of Transportation (UDOT) in June 2021. I hope that once UDOT reaches a single preferred alternative, the public will be given an opportunity to comment on that alternative, fleshed out with details missing from this draft, before a Record of Decision is made.	32.29T
But, before either of those events, I do NOT vote on an alternative action or "no-action." Instead, I provide information for the team to consider before a final decision. I share my thoughts on the preferred alternatives, environmental impacts and other transportation performance considerations contained in the Draft EIS before us. I understand my comments, like all others, will be a matter of public record, subject to public release. However, please remove my street and email addresses from the formal public release, whether on the project website, or otherwise, absent written permission from me ahead of any such release.	32.2.9N
My comments relate to several themes: completeness, ripeness and analysis.	
1. Alta is a community	
I am most familiar with Alta, the town in which I live. We are a small, rural community, with 228 residents in the <u>2020 Census</u> . While this DEIS is massive in length, I find it is missing many details. Because of these holes in analysis and recognition, I have difficulty commenting on something which does not exist. I note here some of those holes, but even with a 45 day, expanded comment period, I have found it an insufficient time period to comment on a report of this size and scope. I provide comments on what IS in the draft, though incomplete, primarily as they relate to Alta.	
Page 1 of 30	

As mentioned above, Alta is a town where people live. We have a school, a church, a medical clinic, a community center, and post office, as well as businesses, <u>one</u> of which is a ski area. UDOT's characterization of Alta misses all save the latter, the ski lift company. Looking at Chapter 4, not residents, nor the people using the school, church, medical clinic, post office or community center are mentioned. It is no surprise then that impacts thereon are also missing. (See §4-3-2, map 4-17; 4.3.5.2.1). Further the "no impact alternative" at § 4.4.1, also miss-identifies our community. Failing to adequately account for the fact that Alta is a residential community, NOT merely a resort, unlike Snowbird, what impact does this have on the analysis or conclusions?	32.4F, 32.4CC, 32.4DD, 32.4EE
2. The environment is not in homeostasis, but ever-changing.	
Environmental impacts from extended droughts, climate fluctuations and changes to ski season lengths, both in the late fall and mid-to-late spring all have an effect on the number of days of a ski season. The DEIS fails to address this, despite the January 2021 Kem C. Gardner Policy Institutes' <u>Utah Roadmap</u> analysis and statements. That Roadmap identified challenges from growth and development that accompanies growth. (<i>Id.</i> , p. 4). The report notes growth leads to development which in turn leads to:	
"more people, more buildings, more traffic, more economic activity – bring[ing] many challenges, as well as many opportunities for a prosperous future . A potential obstacle to Utah achieving its full economic potential, though, is the need for an even more ambitious, comprehensive, and coordinated strategy to address changing climate causes and impacts."	
The Roadmap continues by noting the climate in Utah is changing.	
"[O]ver the past century, the state has warmed about 2° F. In Utah and throughout the western U .S ., heat waves are becoming more common, snow is melting earlier in the spring, flash floods occur more frequently, and tinder-dry conditions contribute to more-frequent and more-severe wildfires." (<i>Id</i> . p. 6.)	32.2.2E
Even the National League of Women Voters platform, supported by the Utah chapter, recognizes natural resources should be managed as	
"interrelated parts of life-supporting ecosystems. Resources should be conserved and protected to assure their future availability. Pollution of these resources should be controlled to preserve the physical, chemical and biological integrity of ecosystems and to protect public health." [This involves specifically] engaging in the public defense of the ecological integrity of threatened ecosystems and watersheds, [such as] Wasatch Canyons. (<i>Id.</i>)	
Page 2 of 30	

The League works to preserve fragile ecosystems from the effects of climate change and growth.	
Does the DEIS address preserving the fragile ecosystems from currently understood climate change effects and growth? The DEIS notes that it is there responsibility of the for-profit ski areas, operating under special use permits from the USFS, to manage visitor experience on those lands. However, the management analysis appears singularly focused on a resort patron, not the wildlife observer, the back-country skier, the hiker, the rock climber, the geologist, the wildlife, nor the fragile ecosystem. How is the preservation of the ecosystem to be balanced against the economic interest of these ski areas? What metric is to be applied, over what time horizon?	32.13A, 32.1 32.4I, 32.17A 32.17B, 32.2 32.20C
The Gardner Institute's Utah Roadmap, identifies changing climate effects to health, extreme weather events, and more. Declining snowpack is documented. The snowpack decreased nearly 80%, between 1955 and 2013. Does the DEIS analyze the effects of this snowpack change to the ski experience, the water or the interrelated ecosystem? Will 80% of Utah's water supply continue to come from melting snowpack; has this compromise to the supply of water from decreasing snowpack levels been addressed in the DEIS? The Roadmap also notes that the snowpack levels decline due to "warmer spring weather and warmer winters." These two factors combine to "cause shorter ski seasons, greater utilization of snow-making equipment at Utah resorts, and increased avalanche risk." (Utah Roadmap, <i>supra</i> , p. 7.) Has this DEIS addressed these scientific findings?	32.2.2E, 32.7 32.12B, 32.1 32.13B 32.12H, 32.7
Not only does the report note declining snowpack, it also highlights warmer, drier conditions with	
"forests more susceptible to disease and pests, such as bark beetles, as drought reduces the ability of trees to defend themselves." (<i>Id.</i>) Wildfires are more frequent, more intense and larger, flash floods are increasing, up six-fold over the past 20 years, winter storms are becoming less frequent, but more intense[which] can damage public infrastructure, interrupt business" (<i>Id.</i>)	
Despite these dire statements of fact, the report encourages hope due to Utah Transit Authority (UTA) now having 54 electric-hybrid buses, 3 fully electric buses and 47 buses powered by natural gas, plus a plan to expand its green fleet. (<i>Id.</i> p. 10) None of this is	
Page 3 of 30	

mentioned in the DEIS. Rather, UDOT presumes UTA will use diesel vehicles in the enhanced bus proposed alternative. Would there be a different analysis, with "greener" technologies? Are costs equivalent? Does the air quality evaluation change if green vehicles were used?	32.2.6.3F
The DEIS also fails to mention that Solitude instituted a parking fee program for the winter of 2020-21. The program established a rate structure where the fee fell inversely with the number of occupants in the vehicle. While Solitude is a ski resort, and in Big Cottonwood Canyon, it too experiences congestion and insufficient parking for all who wanted to park there. The resort began its problem solving with a goal to "reduce air emissions, improve air quality, and reduce traffic congestion and the unnecessary idling it causes." (Utah Roadmap, <i>supra</i> , p. 12.) Having thus framed the goal, Solitude was able to envision and implement a travel and parking plan.	32.2.4D, 32.2.4A
How was this recent example treated in the DEIS; was it praised, supported, or rejected? I couldn't tell, but it appears to have been ignored, despite the project operating for a full season before this DEIS was released. Did Solitude's program reduce air pollutants and traffic congestion? What costs were associated with the program either directly or indirectly? Did it involve millions of taxpayer dollars on the effort? Would such a program work in LCC? If so, could it be implemented now? Was this "experiment" all but ignored?	32.2.2K, 32.2.4D, and 32.2.4A
Many of the environmental concerns and conclusions in the Roadmap are supported in the recently published United Nations Intergovernmental Report. This report makes clear, as does the continuing drought, and the unhealthy air quality many days this summer from evermore frequent and larger scale wildfires, plus the falling level of the Great Salt Lake, climate change is upon us, now. Now is the time to act to reduce climate effects. Does this DEIS fully address this topic? If the scope of the DEIS were not narrowed to traffic movement as the "purpose and need," would the DEIS still reach the same conclusions?	32.10A, 32.2.2E
Framing the problem as it has, UDOT concluded it would be "unacceptable" for extended travel times of 80 minutes, for 50 days of a 150 day ski season. This is the "condition" that needs remedying, by spending 1/2 billion construction dollars. If the "problem" were framed as preserving the natural environment and reducing air pollution along with reducing traffic congestion, are other "solutions" possible, or even likely preferred?	32.1.2B 32.1.4F, 32.10A
Page 4 of 30	

UDOT's "problem statement" seems ill-conceived. If the ski season were but 100 days, are the discussed impacts the same? Does the expense and potential environmental consequences of the considered alternatives continue to justify the significant initial and long term impacts? Is the problem really a matter of improving access to two ski lift company's business? Does focusing on a business, or in fact two businesses, address impacts to Alta's community and the greater environment? What are the impacts in character, scale, visual alterations, and environment within the community of Alta? Will lodges and restaurants in Alta see guests taking either the proposed bus or the gondola for a week's stay, hauling luggage, in and out of trains, buses and gondola cabins? Similarly, will a family of 4, 5 or 6, find it "unacceptably" unwieldy to use multiple modes transportation: transferring from private vehicle to a train, a bus, a gondola, or transfers even from one bus to another? Will people consider taking UTA's TRAX, or Frontrunner, when these modes do not take them to their destination? Will people consider other modes to arrive at the base of the gondola station? Will they transfer from those conveyances, or continue to drive or take private transportation solutions, as they do now? Calculating travel times from the Gondola park n'ride lot fails to capture the entire travel time, staring from one's home or place of lodging.

Establishing new parking lots at the Gravel pit, and La Caille base station, did UDOT perform a "capacity" analysis? It has determined roughly 1500 vehicle spaces are needed at each location. Yet, the "capacity" of the gondola is 1500/hour, at a minimum. Operating limits are 5,500 people per hour, with the <u>Doppelmayr 3S system</u>, the system specified by <u>GondolaWorks</u>, the sponsor of the La Caille preferred gondola alternative. The parking planned for this alternative is wholly inadequate, leading either to lengthy delays, people circling lots waiting for a spot to open, or abandoning the mode, and driving up LCC.

Capacity limits are commonly used by recreation sites in the National Park Service. Arches National Park, as <u>reported</u> July 21st of this year, frequently reaching capacity in parking and on trails by 8 AM. A July 27, 2021 <u>article</u> concluded Teton National Park was studying effects from increasing numbers of tourists, never seen in the 92 year history of the park. National parks are "drowning in tourists, "reported <u>Axios</u>, July 28, 2021; resulting in limits being set and closing access "to avoid the danger of eroding the land." A similar conclusion is presented in <u>Outside</u> magazine's June 25, 2021 article discussing increases in hiking and other outdoor usage which began pre-pandemic and is not expected to fall even post-pandemic, whenever that is. Rather, <u>Outside</u> suggests land managers will likely better manage visitation through permit or reservation systems and environmental education. State parks are not faring better; Colorado's Barr Lake, the

Page 5 of 30

32.1.2B
32.1.2B, 32.1.2D, 32.2.7A, 32.7B, and 32.7C
32.2.4A, 32.2.2L
32.2.4A
32.2.6H
32.2.6.5J, 32.2.6.5N, 32.2.6.1C 32.2.6.5C

 state's 10-largest state park has seen an enormous influx of people, far more than its 43 year history according to a June 2021 article in Westword. A similar story was told July 9 on NPR, entitled "An explosion in visitors is threatening the very thing National Parks try to protect." All of these articles demonstrate setting capacity limits needs to involve more than a site specific approach, the broader "picture" has to be addressed. Has that been done in LCC, as envisioned by the DEIS? All of these articles share a common theme; uncontrolled numbers of visitors can threaten the very thing visitors have come to enjoy. The environment, the ecology, the beauty, the tranquility, these are all potentially detrimentally affected when the number of visitors is not managed appropriately to the resource and available amenities. Where is the visitor capacity analysis in the DEIS? What is the number of visitors LCC can accommodate without harming the watershed? What is the number of people capable of being accommodated with the existing infrastructure in the ski areas? What is the number the backcountry? Is there sufficient water available for residents of LCC and Salt Lake City, even in extended droughts such that water can be allocated to tourists and recreational users , plus irrigation water for lawns in LCC? Indirect effects These effects are defined as later in time and farther removed, but nonetheless still reasonably foreseeable. (40 CFR §1508.8) The DEIS recognizes that growth-inducing effects and others related to induced changes in the area of land use, population density, or growth rate and related effects in air, water and other natural systems, including the 	32.20B, 32.200 32.20B, 32.20A 32.20C
the very thing visitors have come to enjoy. The environment, the ecology, the beauty, the tranquility, these are all potentially detrimentally affected when the number of visitors is not managed appropriately to the resource and available amenities. Where is the visitor capacity analysis in the DEIS? What is the number of visitors LCC can accommodate without harming the watershed? What is the number of people capable of being accommodated with the existing infrastructure in the ski areas? What is the number the backcountry can accommodate? Are there adequate sanitation facilities for all visitors, resort and backcountry? Is there sufficient water available for residents of LCC and Salt Lake City, even in extended droughts such that water can be allocated to tourists and recreational users , plus irrigation water for lawns in LCC?	
These effects are defined as later in time and farther removed, but nonetheless still reasonably foreseeable. (40 CFR §1508.8) The DEIS recognizes that growth-inducing effects and others related to induced changes in the area of land use, population density, or growth rate and related effects in air, water and other natural systems, including the	
reasonably foreseeable. (40 CFR §1508.8) The DEIS recognizes that growth-inducing effects and others related to induced changes in the area of land use, population density, or growth rate and related effects in air, water and other natural systems, including the	
ecosystem. The canyon is said to be the home to 2 international ski resorts and parts of 2 wilderness areas. These statement does not mention effects to communities nor residents.	32.40
Are they ignored in this study and analysis? The DEIS remarks on the watershed nature of the canyon. However, despite its watershed quality, the DEIS includes a false statement that the canyon does not allow dogs. A limited number, by ordinance, of Alta residents as well as the canyon ski areas snow safety canine, have been granted special status with Salt Lake Valley Health Department per <u>Watershed Regulation #14</u> . (See §4.3.2). These does are present, by permit.	32.121
The DEIS uses numbers for the 2017-2018 ski season. (20.3.2) That year was a low snow year with Alta seeing an annual snowfall of only 388 inches. Snow measurements for the	
Page 6 of 30	

years before and after this selected year were all higher: 2016-17 saw 596.5" and 2018-19 saw 626". Does using a low snow year, result in higher, lower or the same number of the visitors as a season with more or less snow? For the selected year, the reported combined LCC ski area visitors totaled 853,000. Looking at data from 5 years rather than that single year, 17-18 has the lowest number of skiers. The range from 2013-2014 through 2016-2017, the years before the year analyzed in the report average 917,000 skiers. Taking all five years, and averaging the total skier , the number is 904,000. Is there a reason that 2017-18 was selected?	32.200
The DEIS also referenced travel data from 2016-2017. The DEIS concluded vehicle trips were 1.2 million, carrying approximately 2.1 million visitors. These numbers were said to be distributed equally between summer and winter. If one doubles 853,000 skiers, the total is 1.7 million annual visitors, not 2.1 million.	32.20P
Table 20.4-1 discusses operations to meet the "30th highest hour traffic volume demand." That is said to occur on 49 days, identified as weekends and holidays. That table depicts total skiers from roadside parking, transit, reduced resort employee trips for total skier capacity with existing infrastructure and with the alternatives. Based on the 49 days evaluated that would result instead of roughly 10K skiers existing, to 12K skiers. What is the effect if it were to use data not from 10 years ago, or low snow years? Would the skier numbers be similar, higher, or lower? What is the impact from those different numbers of skiers?	32.20Q
As for the gondola alternative, what are the planned night operations, what about Snowbird's Oktoberfest operations which occur from August through September on weekends? Bicycles would not be allowed on the gondolas. How many vehicle trips involve vehicles carrying bicycles into LCC? The summer gondola is said to merely add 198 people per day. Alta Ski Lifts (ASL) does not operate a "summer resort." Snowbird does. ASL does not have lodging nor food operations in the summer, other than an occasional food trailer with limited menu and hours. What are the effects on soil erosion into the streams, what about the water quality impacts to the watershed, effects on vegetation, spreading of invasive species, potential disturbances to wildlife and habitat, even assuming only 200 additional people in LCC?	32.20A
While adding less than 200 people to the summer visitation is a small addition, has it been evaluated in combination with all the growth in summer visitation? Was there any analysis about the growth in visitation in Albion Basin year-over-year? The Town of Alta	32.20A
Page 7 of 30	

managed a free summer program for many years. Average annual visitor growth rate from 2011 - 2017 was about 16% a year. This number is low as it was obtained by counting vehicles passing the staff operating a part-time information booth, prior to driving into Albion Basin. Since that time, ASL has taken over operation of z summer program. Have those numbers remained constant, has the growth trend continued? What effect might there be to an annual growth of 16%, on top of the 200 visitors for the alternatives discussed in the DEIS?	32.20B, 32.20A
Population in Salt Lake and Utah counties is projected to grow 36 % and 108%, respectively, from 2017 through 2050; does UDOT and this DEIS anticipate travelers into LCC to also continue to grow? (Table 1.4-1) An <i>Envision 2010</i> study suggested the population will double in the next 30-40 years. Again, the DEIS used old data. Would the results be the same if the Kem C. Gardner January 2021 report were? Are the numbers consistent with each other? What effect might there be to use more up-to-date figures? How were the effects of climate change considered? What about the effects to worsening air quality, water shortages, or a global pandemic restricting economic growth in many sectors for an uncertain length of time going forward, or based on recent data?	32.1.2H, 32.1.2I, 32.1.2B
Trailhead parking is indeed limited in the summer; as it is in most seasons; there are, and always will be, a finite number of spaces. Safety, erosion on trails, spider trails and user- created trails all have a negative impact on the environment and ecosystem, I agree. Was there any analysis to these effects to summer businesses; what is the indirect effect of recreational visitation in the summer on businesses? What effect will there be even if additional trailhead parking spots are added? Will there be sufficient parking spaces for all who might want to use the trailheads? How does the DEIS address, "Build it and they will come," as Kevin Costner's character said in the movie <i>Field of Dreams</i> ?	32.4P, 32.2.6.2.4A
The gondola alternative is said to possibly include summer operations, although not necessarily subsidized by resorts. (20.4.1.2) Would such operation lead to induced recreational users? What is the analysis of indirect effects from such "seasonal" operation continuing? Why restrict analysis of the modes with one operating in winter only and the other in both winter and summer? Many people, if not all, are cost-sensitive when selecting choices. If not subsidized, would there be any incentive to ride a gondola in the summer, or even a bus?	32.20A, 32.1.2C, 32.2.6.3.C, 32.2.6.5F
Finally, the DEIS concludes the gondola does not induce development as the La Caille Center and Village will be built, even absent the gondola. What evidence supports the financial capability or commitment, to achieve this development, the zoning, and other	
Page 8 of 30	

measures, to demonstrate the accuracy of this conclusion? We funding absent moneys from UDOT, the FHWA, resort mone both construction and operation of the gondola?		32.20R
Impacts in Alta		
3. DEIS Limitations		
In designing transportation alternatives, considering cultural : thereto is important. Suggesting mitigation measures to minin alternatives to the overall harm is mandated in the act creatin <u>Transportation</u> and the <u>LWCF</u> program established the year b is then necessary and laudable. The department was created w public safety and accessibility. On the other hand, <u>LWCF</u> , was	nize harm and proposing g the federal <u>Department of</u> efore. Minimizing the harm with the intent to increase	
"bipartisan commitment to safeguard our natu resources and cultural heritage, and to pro opportunities to all Americans. Using zero taxpayer invests earnings from offshore oil and gas leasing t communities, preserve our history and prote endowment of lands and waters.	ovide recreation dollars, the fund o help strengthen	32.26F
Here, UDOT has only used the cultural resources listed in the hazardous materials and waste sites. Does that chapter, or, ch "Thomas Moore toilets" in Alta, a historic structure along U-zone applied along U-210? If not considered, why effect once the final gondola tower and Alta station terminus relative to th What is the likely impact to that cultural resource? What miti to be applied to protect that cultural heritage site?	apter 26, consider the 210? Was the 100' buffer e it is considered? Where is he Thomas Moore structure?	32.15C
What is the significance of the LWCF program and processes Park Service, an agency within the Department of Interior, ra Department of Agriculture, which regulates the national fores Are mandates and directions different by the legislation estab have the NPS policies, practices and mandates been addresse	ther than under the sts through the Organic Act? lishing these agencies. How	32.26C
not mention the Alta Lodge as a historic property either. The Lodge property is merely to design a single-pole tower, rathe tower to "reduce visual impacts." However, that tower remain ground. It is sited in the direction the Alta Lodge has installed guest rooms and located an outdoor patio. Is a single pole, bo	r than a 4-legged lattice hs ten stories above the d nearly all windows for its	32.26C, 32.4O
	Page 9 of 30	

noise and thousands of people queuing for that station, a significant reduction/mitigation? Has the proximity of the Alta Gondola station been considered as those people enter and exit that structure?

The DEIS mentions the need for an easement of .35 acres from an Alta private property, the Alta Lodge. This easement is said to be for gondola cables. (Table 26.5-8.) In addition, a separate acquisition is necessary from the same property owner, of .06 acres for a tower. What about a view easement for the proposed Alta gondola terminus station? How will the gondola descend from that tower, 10 stories high, to the terminus which presumably places the riders close to ground/snow level? What avoidance alternative was considered here? Final design is said to minimize impacts to the transfer tow infrastructure at ASL. (Table 26.8-2). What is the impact to Alta's Rustler Lodge view shed, or the chairlift to that lodge, located not far to the East? What is the impact to the parking lot, both public and private, to the North of this tower and terminus station? These infrastructures are not mentioned; were then ignored? Are these properties within the 100' buffer zone of these two gondola proposed infrastructure activities? If so, what impact might there be and how will that/those impacts be mitigated?

Recreation resources within Alta include the Alta Brighton Trail, FS #1007. (Table 26.4-2) How was this trail identified to have access from only part of the "Flagstaff Trailhead?" Access to the trail into Grizzly Gulch is also available, signed by USFS signage. This spur is managed by the USFS from a trailhead, along U-210, North of the Snowpine Lodge, and West of the Bay City Tunnel building. Why is there no reference to this trailhead/access point? This same Flagstaff trailhead is said to "also serve [] Snakepit Trail (USDA Forest Service #1015) and Albion Meadows Trail (USDA Forest Service #1006.)" Can a trailhead in the canyon, on the North side of the highway, serve these two referenced trails that are on the South side of the highway absent a bridge of connection? Trails from roads #1016 and #1015 are accessed directly from the ASL special use permit ski area. Is there a link from these two FS roads to the Flagstaff trail? Could it be that first required going up to Twin Lakes Pass trail, then a traverse of Wolverine Cirque, remaining on the Patsey Marley ridge, to Catherine's Pass, and then descend into Alta via the Albion Meadows trail, switching to the Snakepit Trail near the bottom? How can that be the case for a trail said to be 1.7 miles in length? This listing does not make sense. Was there consideration given to the separate trails to Catherine's Pass, Snakepit, Albion Meadows, or a trail informally known as "Barb's trail," or merely to the Twin Lakes Pass trail?

Page 10 of 30

32.17A

32.4FF

Was the analysis of recreation facilities within the Town of Alta confined to facilities managed by ASL? What about the Town of Alta park? Was that considered?	32.4DD, 32.4FF
Was consideration given to the historic Alta City site from the late 1800's and early 1900's? What archeological analysis was applied? As discussed <i>infra</i> , similar to the SIO analysis finding "unacceptably low" view integrity, would this archeological site need to have be given another <i>exception</i> ? (Table 26.4.1). An <i>exception</i> is offered for the historic Bay City Mine and Tunnel, also located in Alta. This historic structure was not considered in entirety, only the entrance. Narrowing the scope thus, historic impact and analysis are excluded simply because the entrance is not historic, but a modern building. Where is the analysis of the effects on the historic portion of the mine itself from the proposed activities? What about vibrations, noise, effects to air quality or other measures which might affect "safeguard[ing] our natural areas, water resources and cultural heritage"?	32.15B, 32.26D
Is the analysis complete on "irreversible and irretrievable commitment of resources" for this project? This "chapter" is but one page long; does that suggest by "size," the absence of a thorough analysis; as the DEIS in totality is many hundreds of pages? The DEIS concludes that even once built, should there be a greater need for the use of the land or roadway in the future, or a gondola no longer needed, "the land could be converted to a natural state or another use." The DEIS then continues by stating, "there is no reason to believe that such conversion would <i>ever</i> be necessary or desirable." (Emphasis added.) Where is the consideration of the changes referenced in the recent report of the UN IPCC, or even the Kem C. Gardner Policy Institute report? Is it reasonable to claim successful reversal to a "natural state" in a sensitive ecosystem? Was it not because of old mining operations and both surface and subsurface conditions, that the USFS concluded the proposed land exchanges from ASL would be disallowed?	32.23B
Examining the cost for consumed fossil fuels and construction materials is not the only measure of irretrievability. What about the effects to the air quality and watershed from the construction processes? Are these irreversibly or negatively committed for this project? LCC is characterized as a sensitive high-alpine setting. Trees are near the upper elevation of survivability. What is the survivability of trees planted by ASL, numbered at the thousands of trees annually? Do those trees, planted by "experts" survive for 10 years, let alone the lifespan of earlier confers in this forest environment? What supports the statement that there is no reason to believe a conversion would ever be necessary or desirable?	32.10A, 32.12A, 32.12B, 32.19A 32.23B
Page 11 of 30	

With increases in avalanches, flooding and debris flows, would infrastructure no longer considered safe to operate be simply left in place? Chernobyl was built as a "forever" structure, perhaps with no idea there would ever be a reason to convert the site to another use, or restore it to prior development. Is that the metric UDOT is seeking here? Where is the analysis of the irreversible and irretrievable loss of trees, wildlife habitat and vegetation? Where is the analysis of the likelihood that those items, having been lost, could be "restored?"

Where is the economic and environmental cost information for this "chapter"? Ecological changes are occurring as a result of climate change. Where is the analysis of the effects of that change on the ability to "convert" land disturbed? What supports the conclusion that removal of infrastructure, leads to that land being converted "to a natural state"? Evidence of mining operations, abandoned for more than 100 years, remain evident in LCC. What consideration was given to this reality? Is "conversion" realistic?

4. Views and view-shed.

"Why are we managing scenery? So that out children and grandchildren can enjoy the beauty and spirit of the national forests, just as we have enjoyed them." (Landscape Aesthetics: A Handbook for Scenery Management, USDA Forest Service, 1995)

"You might think that scenery is too subjective to manage (e.g., "beauty is in the eye of the beholder"). However, scenery management on National Forest System lands is a logical and orderly system based on research, which consistently shows that people need and appreciate naturalappearing landscapes, and dislike changes that contrast with or are out of character with these landscapes.

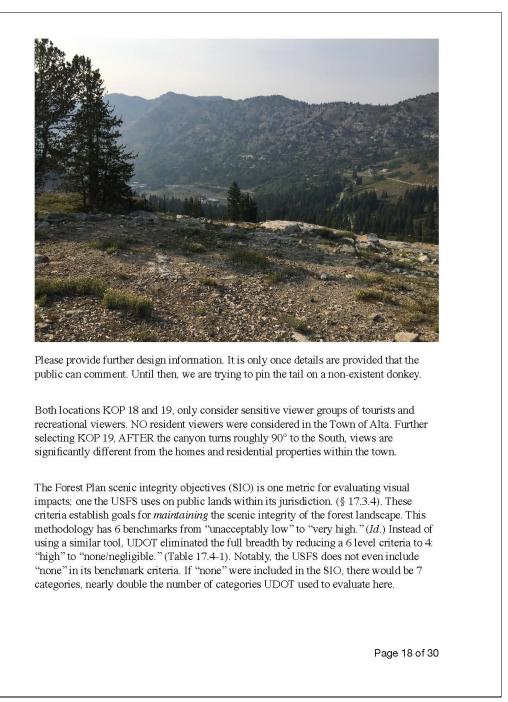
"The Forest Service has been managing scenic resources since 1974, when the Visual Resource Management System was published. In the early 1980s, the [] National Forest was mapped using this system, and "Visual Quality Objectives" were established in the [] Forest Plan. Over the following years the Forest Service developed a new system, guided by 20 years of experience with the old system, substantial advances in research and technology and a significant increase in demand for high-quality scenery. The SMS was unveiled....

"Scenic Resource inventory leads to mapping of scenic classes, the importance of the scene in that area from extremely high level of scenic importance to only moderate importance (5 levels) evaluating inherent scenic attractiveness, (distinctive, typical or indistinctive) concern levels

Page 12 of 30

32.23B, 32.13A, 32.13B

32.23B


and scenic classes from high sensitivity too low. It is form [sic] this that SIO's are established so first managers are guided towards maintaining, restoring and enhancing scenic resources. Projects can then be analyzed for new uses or facility proposals and scenic resources can be monitored over time." <u>Coronado National Forest</u>	
The management of scenic resources is required by many laws, including the National Environmental Policy Act of 1969, the Forest and Rangeland Renewable Resources Planning Act of 1974, as amended by the National Forest Management Act of 1976. These acts ensure equal treatment of scenic resources with other resources. (<i>Id.</i>)	
The Uinta-Wasatch-Cache National Forest (UWCNF) uses the same system as Coronado National Forest. The 18 year old Forest Plan here, describes the future condition for LCC as an area "that will continue to be a valuable and pleasurable natural backdrop for the urban area," with views "carefully managed to sustain scenic resources." (§17.3, quoting from the 2003 Forest Plan.) Has this scenic resource been treated equally with other resources in this DEIS? How has "scenic resource" been given equal resource treatment when the "plan" is to <i>exempt</i> a facility or structure forecasted to be of "unacceptably low" level of scenic integrity?	32.17A, 32.17B
The two wilderness areas in LCC were specifically excluded from the analysis. (17.3.3). This was because creation of those areas was "not intended to create buffers to preclude non-wilderness activities beyond their boundaries." (<i>Id.</i> , citing Public Law 98-428.) Although not in the purpose of the wilderness creation, should the effects from noise and reduced view contrasts nonetheless be considered because recreational users go to those areas to escape infrastructure and "urban" landscapes?	32.17A, 32.17B
UDOT identified the USDA's Standard S22 for Scenery Management: "Unacceptably Low scenic integrity refers to landscapes where the valued landscape character being viewed appears extremely altered. Deviations are extremely dominant and borrow little if any form, line, color, texture, pattern, or scale from the landscape character. Landscapes at this level of integrity need rehabilitation. This level should be used only to inventory existing integrity. It must not be used as a management objective (USDA Forest Service 1995)."	
If the only way the gondola alternative could be implemented is to either ignore this standard, or, simply write in an exemption, does that suggest the alternative is no longer acceptable? The latter is what has been proposed. What other impacts might there be	32.28F
Page 13 of 30	

from this exemption? Are there no other impacts or effects from the suggestion to amend the Forest Plan? Is it sufficient to merely add "This standard does not apply to the activities approved for the Utah Department of Transportation's S.R.210 Project (Record of Decision, [<i>date</i>])"? Might a narrower exemption be crafted to prevent future activities, not part of any record of decision by this proposal, be eliminated from being "grandfathered in" considered as being consistent with the newly altered landscape?	32.28F
UDOT established more than 20 "key observation points (KOP) from which to evaluate the effects on view shed for the analyzed alternatives (enhanced bus and gondola in Appendix 17A, and the cog-rail in Appendix 17B). These KOP's are along Wasatch Boulevard, and continue along LCC roadway, and include a few residential areas at the mouth of the canyon and trails, before they end high above the canyon floor. (Table 17.3-1, <i>et seq.</i>) The rationale offered for selection of these 25 KOP's, is stated to be that they represent "viewing locations from which the sensitive viewer types would	
typically view the project elements from either stationary locations (residential areas or recreation sites) or linear locations (highways and major roads.)" §17.3.3.	
"Viewer groups" are travelers, residents, tourists and recreational. Notably residents are considered a "sensitive viewer type," and defined as	
"people who live and work in the impact analysis area and generally view the landscape from their properties and homes, and often from places of employment while engaged in daily activities." (17.3.2.6)	
The KOP sites are to represent locations where the sensitive viewers, those with the highest sensitivity, typically view the project elements. Residential areas are addressed in 24% of the 25 KOP's, the balance address viewers who are merely traveling through, tourists or recreational viewers. Are there different sensitivities in both duration and location depending on the viewer group? Because the report identifies these three distinct viewer groups, it is clear not all viewers are considered the same. Some viewers have different sensitivities for aesthetics, changes to the landscape, and scenic or historic status.	32.17A and 3.17B
The residential areas analyzed include La Caille, Fort Union Boulevard, Daneborg Drive, Quarry Trailhead, and Wasatch Resort. These properties are roughly at 5000' in elevation. No residential areas were addressed higher in elevation in LCC. No residential areas are analyzed close to the Alta community, nor residences in Snowbird. The residential areas in the canyon include the Gate Buttress, KOP 6, and is about 1 mile up LCC. Wasatch	32.17F
Page 14 of 30	

Resort, identified as KOP 5, is West of KOP 6. Wasatch Resort was selected as a KOP because it "represents typical views from a residential area in Little Cottonwood Canyon and an adjacent popular trail." (Table 17.3-1.)	
Little Cottonwood Canyon includes SR-210, a <u>Utah State Scenic Drive</u> . That drive is 7 miles in length. Over that distance, proceeding Eastward, the roadway climbs approximately 2500 feet above the mouth of the canyon. However, despite this climb, Utah official sites characterizes this canyon as a "glorious natural playground." This is further emphasized by the need for 19 KOP's in the canyon despite a mere 7 mile distance. The balance of the sites are in the Salt Lake Valley.	
Of these 19 canyon sites, all but two are for recreational trails, trailheads and campgrounds; areas for seasonal and/or temporary travelers, tourists and recreational users. (KOP 6-17, 22, 23 and 25; see also, Figure 17.3-2.) A more than two (2) mile gap in KOP's exists between Snowbird Entry 1 to Catherine's, KOP 19, (KOP 23 is in that area, but relates ONLY to the cog rail alternative, not a preferred alternative in this DEIS). (Table 17.3-1.) Even there, the sensitive viewer is not a resident, but a traveler along SR-210 and recreation users or tourists at Snowbird. (<i>Id.</i>)	32.17E, 32.17F
Snowbird Entry 1, KOP 18, is along the highway. KOP 19, designated "Catherine's Pass," is at the top of Alta Ski Lifts Company's (ASL) Sunnyside Lift. (KOP's 18 and 19, pictured in Appendix 17A.) KOP 18 is pictured as both an Existing Condition and a future Proposed Condition. Even then, the depiction is only a portion of the proposed gondola tower. That tower extends off the top of the page. What is displayed is a 4 legged metal lattice tower, rising from the ground. It doesn't to appear any Snowbird residents visual sensitivities evaluated.	32.17F
UDOT has chosen to look to viewer sensitivity as defined by the USDA Forest Service. This metric focuses on the "viewing public who visit recreation sites in the national forest and the viewers degree of concern with changes in the landscape setting or a particular viewshed." (17.3.2.6) Using this metric, consideration is given to volume of use, viewing duration, concern for aesthetics, scenic or historic status, and type of use between travelers, tourists, recreation users and residents. The report highlights scenic or historic status increasing concerns over aesthetics by increasing the amount of use and the duration of use which in turn increases the viewers' concern for changes to the landscape. In addition, special management areas or designations can also affect viewer sensitivities.	
Page 15 of 30	

Here, UDOT's evaluation of visual impacts is within a range of four: either, no-impact, low, medium or high. In Alta, while not a "wilderness," the visual scene is dominated by the mountains, not "Brutalist-style hotel-condominiums" as are dominant in adjacent Snowbird. (see, Tables 26.5-6, 26.5-8, Table 26-5-11, etc. "property descriptions" in Snowbird).	32.17F, 32.4O
With all of this emphasis on viewer sensitivities, UDOT did not address the community of Alta, nor her with 228 residents in the 2020 Census. An entire community is not even analyzed nor a KOP located near these residences. Would the duration of views be "high" from one's home? Similarly, the amount of use of the area and concerns over changes to the landscape from this population is likely inadequately explored as well. Would effects, analysis and results change if the DEIS considered this viewer group. Does not one of these residents warrant analysis from their "stationary location[,] from which residents live and work," designed their homes to enjoy views of Mt. Superior, snowy glades, Hellgate Cliffs, or other natural settings, free from infrastructure? Where are Alta residents included? Is there a reason these residents were specifically excluded from sensitive viewer analysis? How would the analysis change should they be included?	32.40, 32.17A, 32.17B, 32.17F
The DEIS locates cables and towers that literally "tower above" the homes, nature trails, and the community, as high as a twenty-story (20) building. Could this design make a significant impact to A viewer, let alone a sensitive viewer concerned with changes to the landscape setting? Also, the proposal locates a ten-story(10 story) high tower along a relatively flat, area immediately adjacent to the Town Park. What level of concern for the sensitive park user/viewer is involved? The gondola terminus, location has an ill-defined footprint on the ground or in the "air." There is no depiction for how much of the view shed might be affect. How can the effect be evaluated when details are absent?	32.4O, 32.4DD 32.17F
Information is missing though some parts of this DEIS were prepared in July of 2020, almost a year before it was provided to the public. For example, the pages after the "current and proposed future conditions" depictions for KOP 18, Snowbird Entry 1, is a BLM's "visual contrast rating worksheet. "That sheet identifies the degree of contrast of structures as "Strong" in form, in line, in color. Only texture is at the "moderate" level of visual contrast with the surrounding landscape. Mitigating measures" are not provided, but said "to be developed based on further design information." Does failing to include design criteria make the visual contrast evaluation pre-mature?	32.17L
Page 16 of 30	

KOP 19 does not include a representation for the "proposed condition." (Table 17.3-1). This is likely so because having chosen this location, the gondola terminus and the tall, 10 and 20-story towers within Alta, are obscured by Greeley Bowl. The proposed elements would be "around the bend" of the canyon. This leads also to "no contrast" rating for the elements of form, line, color, color or texture. Similarly, no mitigating measures are recommended; the "elements" are not evident because the viewing location avoids that, hence "no perceived change." That location "allows" conformance with the SIO's. (Defined <i>infra</i>) What if the KOP 19 were located on Albion Meadows Trail, or from Mt. Superior, or Flagstaff trails? What if from residences along Albion Basin Road, residences along the Bypass Road, residences along Powder Run Road, to name but a few residential areas? What effect would there be to the visual contrast rating and the SIO criteria? Would ratings continue to be "none" or no perceived change in landscape character? Obviously not.	32.17F 32.17H 32.17L
The SIO includes goals 59 and 60. These goals require managing forest landscapes according to landscape character, themes and that the SIO's be mapped. (G59). Similarly, no resource management activity should be permitted to reduce scenic integrity below the objective stated for the management prescription categories. (G60) Was the selection of KOP's to choose areas with only contrast ratings as merely "high" versus unacceptable? How many other sites along the route of the proposed gondola, if selected, would result in the same analysis? Would ratings continue to be predominantly involving "no perceived change"?	32.17N
I took this photograph from the same location as KOP 19. It is not Catherine's Pass, but closer to tower 14 of the Sunnyside lift in Alta Ski Lift Company's (ASL) special use permit area on USFS lands. This photo depicts the scene approximately 6 towers "below" the Sunnyside lift terminus. One can not even see Mt. Superior nor Cardiff Pass. Why isn't the classic view from Alta which appears in coffee table books, calendars and promotional literature, i.e., looking down the canyon with the profile of Mt. Superior on the right, included as a KOP? From that perspective, the gondola station and towers would be prominent.	32.17F
Page 17 of 30	

32.17F

32.170

What effect is there for UDOT using a scale with fewer benchmarks? Does it result in a mischaracterization of the visual impacts as artificially low? The SIO contains four distinct objectives that can fairly be categorized as visually impactful: from a noticeable deviation, activities visually subordinate to landscape character, vegetation and landform alterations of the activity are dominant but valued viewing from background distance, and deviations are extremely dominant requiring landscapes needing rehabilitation. The "unacceptably low" criteria is only to be used for inventory, not as a management objective. There is no "objective" to have a visual impact which is unacceptably low.	32.170
Preferred alternative Gondola B, received an evaluation of " <i>unacceptably low</i> " because it is said to lack the ability to meet the visual, scenic integrity objectives in the 2003 Forest Plan. Nonetheless, no mitigation is proposed. Rather, the "management" option selected is a suggestion to <i>exempt</i> the project, a "one-time", exception, said "not to establish a precedent for other potential amendments." (See, 28.3.2.2 and 28.4). Would future visual impacts be evaluated based on the then current landscape with a then existing gondola, cables, cabins, towers and termini infrastructure in place? Was there any analysis given to an "exemption" and a potential "forever" visual impact?	32.17P
Where is the analysis of percentage of land and water and vegetation versus man-made structures in KOP 19? If that location were moved to Patsey Marley, would the conclusion of "no perceived change" remain? Table 17.4-16, identifies the possible settings as urban, developed natural, natural appearing, natural evolving and resort natural setting. Three of these five, the middle three, demonstrate impacts which are high-to-moderate.	32.17F
Snowbird brands itself as a ski and summer <u>resort</u> . That label tells the public to expect a resort with amenities for winter and summer. It colors expectations for visitors to expect infrastructures, both those involved in winter sports, but also those not involving skiing or snowboarding.	
On the other hand, Alta Ski Lifts, Company, brands itself as a winter ski lifts company, with winter trail maps with an address for "Alta Ski Area.". A SL's <u>summer</u> trail map is on the website. Snowbird on the other hand, prints and distributes seasonal trail maps; a <u>winter</u> trail map, and a separate resort map showing summer operations including dining, lodging, and <u>activities</u> like alpine slide, bungee trampolines, rope courses, fishing, shopping and Oktoberfest.	
Page 19 of 30	

Is there an analysis showing that Alta and Snowbird should be treated the same? Is there a Snowbird community commensurate with the Town of Alta residential community? Is the character of Alta Town the same, similar or disparate from the character of Snowbird resort? Is the town of Alta synonymous with the Alta Ski Lifts Company business, or, are they separately and distinctly addressed? Does the DEIS assume that one speaks for the other? Is Snowbird more akin to an amusement park than a municipality? Is the landscape of Snowbird inline with project elements that were coordinated so as not to detract attention one from another? The DEIS characterizes Snowbird as a resort setting with a characteristic of "natural evolving." The landscape has substantial alterations so it is concluded there would be negligible impacts from the proposed alternatives under consideration.	32.17A, 32.17B, 32.17F
Is there a reason the Town of Alta was not evaluated? Is it because the natural elements in Alta dominate? Would that characterization remain constant with the addition of the proposed alternative of Gondola B, or even the widened roadway in the enhanced bus alternative? Would the landscape be substantially altered with the proposed activity? What is the current character of the landscape and what would it become with the proposed alternative? Absent UDOT doing this analysis, there is nothing for me to comment upon.	32.4O and 32.17F
The FAA requires towers and man-made features taller than 200'AGL to have obstruction lighting to prevent aviation accidents. The DEIS notes Little Cottonwood has an "enclosed nature." (17.4.5.2) It is because of this "nature" the FAA may require <u>all</u> towers to be illuminated for safe aircraft operations. Typically this requires flashing lights, turning on and off, 20 to 40 times per minute. This would create a string of flashing lights in Alta and potentially throughout the canyon. LCC is noted to consist of "night skies which are relatively dark," once one ascends above of the Salt Lake valley light dome. What consideration was given to Alta investigating registering as a <u>Dark Sky</u> community?	32.17M
Both Airmed and construction helicopters have been regularly used in the past few years to both airlift injured people form the ski slopes and hiking trails, but also install avalanche devices and lift towers. Only Airmed/rescue operations have occurred in the dark, in the night, summer or winter. How would these operations be affected by the alternatives addressed by the DEIS? The DEIS considers proximity sensor lighting an option, if feasible and approved by the FAA, possibly aircraft detection lighting system (ADLS). Was there any consideration given to beginning night operations? Was there any evaluation of the magnitude of the change from zero to x? In the "immediate and	32.2.6.4C
Page 20 of 30	

foreground", would impacts be high? Or, would the impacts be "everywhere" due to the enclosed nature of LCC? The DEIS is incomplete in not evaluating the immediate, foreground or middle landscapes.	32.17M
5. Considerations of a Changing Climate	
As stated above, August 9, 2021, the United Nations Intergovernmental Panel on Climate Change, issued a "Code Red," report describing human driven global heating as irrefutable, irreversible, requiring immediate action to reduce greenhouse emissions. (UN IPCC 2021).	
UDOT should now recognize the IPCC report sets forth new information and scientific evidence on climate change, not available when the DEIS was being drafted and finally released in June. The IPCC report must lead to a re-evaluation of the environmental assumptions and consequences from the proposed alternatives. Would the "no-action" alternative achieve a higher score, or other alternatives previously rejected? Is it still tenable to act as if previously conceived solutions and prior practices, i.e. adding more human-made infrastructure to the forest, and ignoring the human impact from an unlimited number of people, is still the direction to take? Ignoring this new report and the consequences stated therein seems imprudent at best.	32.2.2E 32.10A 32.17J 32.20A 32.20C 32.10L
We have already seen that, formerly rare, heavy rains are occurring now, bringing additional debris flows. This will likely occur more frequently, and new drainages from erosion contributed by more people creating and widening user-created trails. U-210 has been an artery for well over 80 years. This roadway <i>needs</i> to continue to be such into the future for LCC residents and businesses unable to use a gondola nor a bus. The DEIS ignores this basic fact. This silence is another demonstration that the EIS in incomplete.	32.10L
Project contrast, as the methodology from the Bureau of Land Management (BLM), is again here circumscribed to the <i>immediate</i> foreground (\leq .0.25 mile), the <i>foreground</i> more than 0.25 miles, but less than 0.5 miles from the activity, whereas <i>middle</i> ground is anything beyond 1/2 mile. However, even that one location in Alta is removed to the top of the Sunnyside ski lift. From that location, any proposed large towers will likely be obscured, as would be the large terminus building. Further, that location is ninety degree (90°) from the principal direction of Little Cottonwood Canyon. The view and observation there is <u>Not</u> similar to the rest of the town of Alta. The DEIS analyzed <u>no</u>	32.17F
Page 21 of 30	

town observation points. (See Tables 17.4-2 through 17.4-28.) Not from Cardiff Pass Trail, nor from residences in Alta which have prized the mountainous and or stream-bed views and sited windows to capitalize on the views of natural rock, trees, water. I am unaware of anyone who has sought nor emphasized views of manmade mechanical, transportation, or infrastructure "improvements."	32.17F
In addition, the change to precipitation is also not effectively considered. Droughts will persist, not as single year events, but decades long events; as has the current drought. There will also be periods of heavy rains. There will be low snow years and high snow years. However, the DEIS fails to consider the fact a "ski season" duration is not a constant; that "season" is no one, specific length. It can begin in early November, but also can be pushed back to late December- nearly a 50 day difference. In recent years, more snow in the early season has been "man-made." That snow is possible through a combination of cold air and water forced through snow guns or fans. Only when both	32.2.2E
temperatures in the mountains are sustainably low, and water is available can that occur. Increased population in the Salt Lake Valley demands more and more culinary water annually. There is a finite amount of water, almost all water in LCC is owned by Salt Lake City Corporation. Has UDOT considered the priorities of allocating water for household drinking water air in conflict with resort use of water for snow-making? Will Salt Lake City continue to allocate water for snowmaking, and at current rates, higher rates, lower rates, or variably, over the next 30 to 50 years?	32.12H
6. Traffic management	
Examining indirect effects, the DEIS notes an Alta Town resolution supporting a visitor management plan for the roadway. The analysis then concludes that neither alternative advanced would increase the capacity for personal vehicles on S.R. 210, because "both alternatives would try to reduce personal vehicle use by 30% during the	
winter." (20.4.2.2.1). This is to be achieved by "eliminating winter roadside parking," further reducing congestion and the "need for the town manage traffic." (<i>Id.</i>)	32.2.4A
Trying "to reduce use of personal vehicles is a laudable goal, yet the DEIS does not provide concrete plans for <u>achieving</u> the reduction. Even with ski area subsidies for resort employees and pass holders, there are many people who use the canyon NOT for resort skiing. They ice-climb, the participate in backcountry skiing, snowshoeing, and photography. There is no suggestion that these individuals or groups would be subsidized to use either mode proposed here.	32.2.4A 32.1.2D
Page 22 of 30	

Where are the 230 roadside parking spaces to be eliminated? Do any of these involve lands belonging to private property owners? Are they in the town of Alta, near trailheads in the lower canyon, or along SR-210 at Snowbird? No details are provided to be able to tell whether Alta managed traffic would be reduced, or increased by vehicles seeking already crowded and inadequate parking areas outside UDOT's jurisdiction, USFS lands, or private property. The Alta Marshal Office (AMO) provides stellar support for ALL users of SR-210 within the town limits, and when requested, in the canyon beyond Town boundaries. Where is the evidence for the conclusion that no "induced visitation in the town [of] Alta," would result from a bus service only to businesses? The service identified, stops exclusively in the resorts resulting in people taking the buses, though they may have an ultimate destination other than those businesses, but needing to arrive at the resort, at least initially. Does either the bus or gondola option provide public or private transportation to take people to other canyon locations, not directly/primarily served? Would a UTA bus be scheduled to take folks down canyon to their ultimate destination? Would there be a published schedule to pick people up from "down-canyon" recreational locations and return them to Alta or Snowbird Ski and Summer Resort? Would tourists those using other recreation opportunities be enabled to then board another vehicle, whether bus or gondola, to take them all the way down the canyon following their recreational activity outside the businesses served?	32.2.6.2.5A 32.2.6.3C, 32.2.6.5G, 32.2.6T
Absent knowing these details, it is difficult to tell whether the stated attempt to reduce personal vehicle use, and/or eliminating of <i>some</i> roadside parking would indeed reduce the need for Alta Town managed traffic. Would the result indeed be a reduction in the town's operating budget from improved traffic management outside the town limits? Or, would the impacts increase town management and result in an increase in the town's operating budget, falling not only on the businesses in town, but also the private property owners/residents?	32.2.4A, 32.1.2D
What agency could manage "no-limit" traffic? Certainly, AMO can not. Would controlling traffic AFTER vehicles reach Snowbird, then be subject to tolling, solve problems or create more congestion, pollution, noise and even possibly aggression? Absent controlling traffic at the mouth of the canyon, how can personal vehicle use be managed in a way that reduces the need for the Town to manage traffic? In the event that either alternative were pushed forward, what is the mechanism to actually reduce personal vehicle use? Assuming UDOT is successful in reducing personal vehicle use by 30%; with either enhanced buses or a gondola operating, with capacity for 5,500 people per hour, is a 30% reduction enough to avoid overwhelming the canyon with visitors?	32.2.4A, 32.7B 32.2.4A 32.2.6.5N, 32.7C
Page 23 of 30	

7. Visitor management

The <u>USFS</u> expresses its obligation to provide balanced access to all users of public lands within that agency's jurisdiction; whether resort users to lands within special use permits to the resorts, or to people recreating on public lands, outside the ski lift businesses. The Uinta-Wasatch-Cache National Forest (UWCNF) is tasked with managing lands in the Wasatch Mountains. "The Forest Service and its employees are public servants tasked with trying to 'provide the greatest amount of good to the greatest amount of people.'" (*Id.*) Within this rubric, and constrained by the National Ski Area Permit Act, and as amended, the Agriculture Department and agency within, provide guidance for permitee operations for skiing and ancillary facilities. However, as mentioned, the USFS also requires the permitee to support, or at a minimum not thwart, non-resort users to the national forest.

The UWCNF has chosen not to undertake visitor management studies. Other forests within the department have, and continue to do so consistent with visitor management sciences and criteria developed by experts analyzing and implementing best management practices within that field. See <u>Coronado National Forest</u>, not far from Tucson, Arizona. Sabino Canyon sees millions of visitors each year, similar to LCC.

What is the supply of recreational opportunities that can be accommodated? The UWCNF has limited the number of parking spaces to levels in the 2003 Forest Plan. Similarly, the parking on permitted lands must accommodate all uses of the forest, whether visits to the permittee's operations, or other public lands under a multi-use accommodation. In a boxed canyon, such as LCC, the supply of opportunities is finite, as are the number of hamburgers available to sell, the number of seats at the restaurant, the stalls in the bathroom, and virtually all measures traditionally used to set capacity for concert venues, movie theaters, buses, gondolas, etc. Visitor capacity also implies a quality standard.

Alta, Snowbird and other recreation permit holders are tasked with "managing visitors' experience and safety." (DEIS 20.4.2.2.2.) This is stated to includes the area's responsibility to protect public health, safety and the environment while ensuring delivery of high quality services. To accomplish this, the businesses are required by the USFS, to provide appropriate infrastructure to accommodate skiers, and other users to the public lands.

When the UWCNF does not do visitor management, is the permitee required to perform that analysis to include in its master development plan? When the permitee is operating in

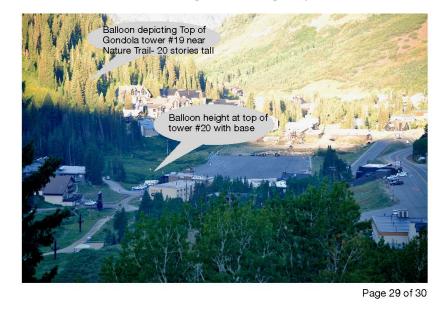
Page 24 of 30

32.20B

32.20B

 will be necessary in the canyon under UDOT's DEIS alternatives? How much more employee housing, more guest accommodations, restaurants, retail outlets will be needed? How will all of this expanding visitation not create an economic stress on the town Alta and her private property taxpayers to fund public safety for these millions of visitors? How does the DEIS address the fact that demand in Alta exceeds capacity at present? What parameters besides traffic and parking have been considered by UDOT? "Authority of the resource" analysis suggest that visitor capacity, or supply of opportunity, is really 		
 vehicles attempting to enter Alta ski area. He turned them away saying "I we were to permit more skiers on the mountain it would compromise the quality of the experience skiers have learned to expect from us." NYTIMES, March 3, 1998, §3 p. 11 entitled. "EARNING IT: A ski area without the extremes." Alta was turning a profit with 3, 500 skiers a day with more customers than it needed. In 1996-1997 gross income from lift tickets sold was estimated to be about \$12.6 million annually. ASL pays 2.5 percent of net income to the Forest Service for use of the land. The NYTimes article says that ASL remains committed to staying small and independent. Wieringa's proposal to limit the number of cars and buses that could park on the mountain, was eventually supported. Current General Manager, Mike Maughan described the ASL, in a July 14, 2021, Alta Town Council meeting. Therein he considered the ski area a "mature ski area, [and] anticipating more demand than they have capacity to accommodate going into the future. Focus will be how to manage that demand in a way to take care of the ski experience as well as the resource." (Alta Town website, meeting recording.) Development in Alta is limited due to water limits controlled by Salt Lake City, as well as the municipal zoning and building regulations. What infrastructure growth and expansion will be necessary in the canyon under UDOT's DEIS alternatives? How much more employee housing, more guest accommodations, restaurants, retail outlets will be necessary in the canyon under UDOT's DEIS alternatives? How much more employee housing suggest that visitor capacity, or supply of opportunity, is really the first consideration. Where is the opportunity to increase of supply; where is the effort to reduce demand? What effort has been put into studying the fact that the visitors to LCC are on par with the visitors to Yellowstone National Park? Yellowstone saw an 11% 	municipal building and zoning, does the forest require compliance with all other jurisdictions rules? Is the permitee operating on NF lands considered exempt from municipal zoning which requires provision for adequate onsite parking spaces for all new residential units? Is the permitee required to contract for public safety and health for its customers rather than rely on municipal services? What metrics must the permitee follow	32.28J
Town Council meeting. Therein he considered the ski area a "mature ski area, [and] anticipating more demand than they have capacity to accommodate going into the future. Focus will be how to manage that demand in a way to take care of the ski experience as well as the resource." (Alta Town website, meeting recording.)32.200Development in Alta is limited due to water limits controlled by Salt Lake City, as well as the municipal zoning and building regulations. What infrastructure growth and expansion will be necessary in the canyon under UDOT's DEIS alternatives? How much more employee housing, more guest accommodations, restaurants, retail outlets will be needed? How will all of this expanding visitation not create an economic stress on the town Alta and her private property taxpayers to fund public safety for these millions of visitors?32.200How does the DEIS address the fact that demand in Alta exceeds capacity at present? What parameters besides traffic and parking have been considered by UDOT? "Authority of the resource" analysis suggest that visitor capacity, or supply of opportunity, is really the first consideration. Where is the opportunity to increase of supply; where is the effort 	vehicles attempting to enter Alta ski area. He turned them away saying 'If we were to permit more skiers on the mountain it would compromise the quality of the experience skiers have learned to expect from us." <u>NYTimes</u> , March 3, 1998, §3 p. 11 entitled, "EARNING IT: A ski area without the extremes." Alta was turning a profit with 3,500 skiers a day with more customers than it needed. In 1996-1997 gross income from lift tickets sold was estimated to be about \$12.6 million annually. ASL pays 2.5 percent of net income to the Forest Service for use of the land. The NYTimes article says that ASL remains committed to staying small and independent. Wieringa's proposal to limit the	
the municipal zoning and building regulations. What infrastructure growth and expansion will be necessary in the canyon under UDOT's DEIS alternatives? How much more employee housing, more guest accommodations, restaurants, retail outlets will be needed? How will all of this expanding visitation not create an economic stress on the town Alta and her private property taxpayers to fund public safety for these millions of visitors?32.200How does the DEIS address the fact that demand in Alta exceeds capacity at present? What parameters besides traffic and parking have been considered by UDOT? "Authority of the resource" analysis suggest that visitor capacity, or supply of opportunity, is really the first consideration. Where is the opportunity to increase of supply; where is the effort to reduce demand? What effort has been put into studying the fact that the visitors to LCC are on par with the visitors to <u>Yellowstone</u> National Park? Yellowstone saw an 11%32.200 <b< td=""><td>Town Council meeting. Therein he considered the ski area a "mature ski area, [and] anticipating more demand than they have capacity to accommodate going into the future. Focus will be how to manage that demand in a way to take care of the ski experience as</td><td></td></b<>	Town Council meeting. Therein he considered the ski area a "mature ski area, [and] anticipating more demand than they have capacity to accommodate going into the future. Focus will be how to manage that demand in a way to take care of the ski experience as	
What parameters besides traffic and parking have been considered by UDOT? "Authority of the resource" analysis suggest that visitor capacity, or supply of opportunity, is really the first consideration. Where is the opportunity to increase of supply; where is the effort to reduce demand? What effort has been put into studying the fact that the visitors to LCC are on par with the visitors to <u>Yellowstone</u> National Park? Yellowstone saw an 11%	the municipal zoning and building regulations. What infrastructure growth and expansion will be necessary in the canyon under UDOT's DEIS alternatives? How much more employee housing, more guest accommodations, restaurants, retail outlets will be needed? How will all of this expanding visitation not create an economic stress on the town Alta and her private property taxpayers to fund public safety for these millions of	32.20C
Page 25 of 30	What parameters besides traffic and parking have been considered by UDOT? "Authority of the resource" analysis suggest that visitor capacity, or supply of opportunity, is really the first consideration. Where is the opportunity to increase of supply; where is the effort to reduce demand? What effort has been put into studying the fact that the visitors to	32.20C 32.2.4A
	Page 25 of 30	

 increase in May '21 over May '19, with 483K visitors. 2020 was logged as the busiest year; with 3.8 Million visitors. The NPS workforce in Yellowstone is 800 people managing 2.2 million acres. The <u>Salt Lake Ranger District</u> manages 215,000 acres of NF lands in Davis, Salt Lake, and Tooele Counties. This district manages that with a full-time staff of about 15 people, plus 55 seasonal summer employees as well as volunteers. and <u>Uinta-Wasatch-Cache National Forest</u>, one of the most heavily visited in the entire National Forest System, with nearly 1.2 million acres, and a workforce of fewer than 1K. Budgets of the two areas are comparably imbalanced as well; there is \$33M budgeted for the Yellowstone NPS including rangers, law enforcement, safety and security, emergency medical, search and rescue, structural and wildland fire On the other hand UWCNF, <u>SL Ranger District</u>: has noted reliance is on partners in material and personnel, "As population grows in the areas surrounding the Salt Lake District, 	32.20A, 32.20C
the Yellowstone NPS including rangers, law enforcement, safety and security, emergency medical, search and rescue, structural and wildland fire On the other hand UWCNF, <u>SL Ranger District</u> : has noted reliance is on partners in material and personnel,	
it will require committed, collaborative and sustained efforts between the Forest Service, local communities, concerned citizens, and visitors to insure these fragile plants [AB summer-long wildflower displays] and wildlife [The Bonneville Cutthroat, a sensitive species, [] making a comeback in many of district's lakes and streams] are protected."	
Stellar efforts are underway from the UWCNF Salt Lake Ranger's offie, as well as Friends of the SL Ranger District. Non-profits and volunteer groups as well as ASL and Alta mount efforts to improve the forest health by removing invasive weeks, restoring areas damaged by user-created trails, tree planting in the forest, and other cooperative efforts. Nevertheless, the Friends of the District website notes nearly "6 million visitors per year, primarily in Little Cottonwood, Big Cottonwood, and Millcreek Canyons year round enjoy[ing] a <i>multitude</i> of <i>recreational experiences</i> , such as downhill skiing, cross country skiing, camping, mountain biking, hiking, rock climbing, horseback riding, wildflower and wildlife viewing, and motorized off- road recreation. In addition, the Wasatch Mountains bring in artists who capture nature's beauty in their preferred medium." (<i>Id.</i>)	
However, absent a canyon-wide capacity analysis, a valuable tool is missing. This is a tool for forest and municipal management that the Central Wasatch Commission is seeking, but results of the initial phased analysis are not yet available. Absent a visitor capacity analysis, where is the analysis into the impacts on a small rural community and its residents both to quality of life and economy? What impact would the preferred alternative present should interlodge conditions develop; will there be adequate indoor, safe spaces for-visitors? How can thousands of visitors exit the canyon at the end of the day without delays? The analysis considers the ingress, NOT the egress.	32.20B 32.20A 32.20C 32.4O 32.7C
Page 26 of 30	02.10


prescription for capacity decisions absent prior capacity analysis and monitoring? What number of people can be accommodated for each recreational experience? How will	32.20B 32.20C 32.21C
What are the quality standards used to measure these impacts? How and when will visitor satisfaction be viewed/evaluated? Businesses can seek patron input, but what about the visitor to the NF lands outside the ski areas; how are their opinions and sensibilities obtained? When and what opportunity will there be for written complaints; to whom and how will they be resoled? How are law enforcement encounters handled on the ground? What and when might they be needed in the transportation system, whether the gondola or the bus? Considering drugs, weapons, and mental instability; will Transportation Safety Administration (TSA) personnel be necessary? If so, how many, and where deployed? Specifically, for the gondola, where will operators be located, have the opportunity to take breaks, be housed, obtain meals, and have their sanitation needs met?	32.20B, 32.20A, 32.20C 32.2.6F
We know from experiences now, that despite traffic congestion and excessive travel times in the morning and evening, people STILL come into LCC for the beginning of the ski day. Many people have NOT altered their destination, nor alter their arrival or departure times to avoid delays. UDOT had a pilot program for LCC of pre-qualifying vehicles of residents and employees. This program allowed those individuals to present their vehicles pre-season and demonstrate they had traction control devices, either 4X4, snow tires, chains, or other devices to qualify for a windshield sticker to avoid waiting in the line at the entrance to the canyon. Did this effort work? Would adopting a traction control requirement for the entire winter improve the drive in LCC? Is it the "unexpected" snowfall that occurs when 2-wheel drive vehicles are traveling the canyon, having arrived when no snow was falling which are causing traffic accidents and congestion? Is the construction or heavy delivery vehicle traveling during peak periods slowing traffic flows; might they be restricted from traveling then?	32.2.2M
Page 27 of 30	

Why has tolling not been implemented? Why wait to implement the program as part of a \$500+ million construction project? What is the social justice to charge when some people can not afford to ski so can not receive the ski area subsidy? How can the people who merely want to take nature photographs in the twilight or pre-dawn, take advantage of the system as envisioned? What about employees who must arrive to work before dawn or remain after dark; will the modes envisioned accommodate early morning and late night travel, or must these employees take their private vehicles because their schedules do not align with the majority of other users and the conveyance schedule?	32.2.4A, 32.2.2Y, 32.5A, 32.2.6.3N, 32.2.6.5N
When discussing tolling, the DEIS dos not include a toll amount, as it is said to be driven by travel demand. Is this an uncertainty that will lead to "smart" travel choices, or not? Is it a fair assumption that a \$20/day toll "might "lead to 1200 skiers and about 550 vehicles no longer visiting the ski resorts? Could the system be tested now, prior to spending one-half a billion dollars?	32.2.4A, 32.2.2Y
UDOT does "not expect" tolling to cause "either roadway congestion or overcrowding at one resort." Might it lead to congestion and/or overcrowding at more than one resort? Are people making resort destination decisions based on travel, ticket price, snowfall, terrain, or other factors unrelated to transit? The DEIS proposal outlined in 20.4.6, applies a toll "only to areas above Snowbird Entry 1," "in effect only during busy morning periods in the winter," visitors to trailheads in the lower canyon would not be affected. What is the plan for late afternoon traffic congestion? Vehicles leaving the Alta ski area are confronted with multiple delays. The "high-T" intersections installed at the Wildcat Lot, Snowbird Entries 4, 3, and 1, aid the flow of traffic primarily from the Snowbird resort. For every two vehicle leaving ASL's Albion parking lot, there will be 15 additional cars entering the traffic lanes between those vehicles, by the time those two vehicles are West of Snowbird Entry 1.	32.7C 32.20C 32.2.4A 32.7C
UDOT proposes working with UWCNF, should it implement a site fee for LCC such that the roadway toll and the site fee be a single winter fee for backcountry users. The envisioned system is for UDOT becoming a USFS concessionaire, by "paying a yearly fee for winter operations and maintenance of amenities at the recreation site of potentially constructing the amenities for the USDA Forest Service." There is no mention whether a bidding process would be required for others desiring to take that concession and the permit application period. As the	32.20S
Page 28 of 30	

DEIS speaks to winter travel needs, no consideration is given to fall, spring or summer access issues. What is the effect on visitors in those seasons? Would there be a yearly non-winter fee to use the envisioned UDOT amenities for trailheads? How would all that interact with the Salt Lake City watershed provisions?

The DEIS sites the Snowbird gondola station over the By-Pass Road, a 4-lane roadway including a bridge, east of a 13 story hotel and west of a 4-story parking garage, all operated by Snowbird Ski and Summer Resort. From that perspective and location, Tower 17 does NOT have a substantial impact. Snowbird presents as a resort setting infrastructure to support the resort's activities are not out of place, That setting also has clear views of the tram and towers which Snowbird uses to transport people to Hidden Peak. It also has visual complexity with many high-rise hotels and lift infrastructure plus the attractions of the summer operations including a mountain coaster. Locating additional UDOT gondola towers and a station in over the Bypass Road in Snowbird might not seem to impact that resort setting.

Does the same conclusion apply for Tower 19, pictured below, along the Nature Trail in Alta? That tower is said to be 20-stories high, at 230 feet above the ground. That tower is not far from residences in Powder Ridge, residents along the By-Pass Road. Does this

32.2.4A 32.20S 32.2.6.2.4H

32.17A, 32.40

location have the same or even similar "resort setting" as Tower 17, surrounded by resort infrastructure and a 4-lane roadway? Does the mere fact this locations positioned on a dirt, non-plowed "nature trail" suggest a more substantial impact compared to the Snowbird resort setting?	
Similarly, although Tower 20 is proposed to be located in the ASL ski area, it is very close to the Alta Town park, which currently has picnic tables with built-in BBQ equipment, and a volleyball court. The proposed tower in that location, is <i>only</i> 10 stories tall. Was there consideration of the fact this tower site and terminus is in an area where school children in Alta, attending elementary school in the vicinity, recreate in that park location year-round?	32.4DD
In summary, I hope UDOT has a visitor capacity analysis done as an important precursor to any considerations or conclusions, including possibly major construction projects within LCC. Secondly, climate changes and future conditions need also to be evaluated and understood prior to making infrastructure suggestions, rather than relying on past conditions. Future winter Olympic events should not be considered in LCC for all of the safety reasons explored above and more, in the current DEIS. Finally, I believe a more thorough analysis is necessary for a proposed Final EIS, followed by an opportunity for the public to comment prior to a record of decision.	32.20B 32.2.2EE 32.29T
Sincerely,	
Margaret Bourke Resident, Alta Utah	
Cc	
Governor, Spencer Cox Lt. Governor Deidre Henderson Senator Kirk A. Cullimore Senator Kathleen Riebe Representative Gay Lynn Bennion Salt Lake County Mayor Jenny Wilson Salt Lake City Mayor Erin Mendenhall USFS, Uinta Wasatch Cache National Forest: Acting Supervisor Chad Hudson USFS, Salt Lake Ranger District, Ranger Bekee Hotze Save our Canyons, Executive Director Carl Fischer	
Page 30 of 30	

COMMENT #:	13320
DATE:	9/3/21 12:00 PM
SOURCE:	Email
NAME:	Mike Maughan

COMMENT:

]
August 12, 2021	
Little Cottonwood Canyon EIS	
c/o HDR 2825 E Cottonwood Parkway, Suite 200	
Cottonwood Heights, UT 84121	
RE: Alta Ski Area's comments regarding UDOT's preferred transportation alternatives presented in its Little Cottonwood Draft EIS.	
Dear UDOT EIS Team,	
First and foremost, thank you for your hard work on the monumental task of evaluating transportation	
alternatives for Little Cottonwood Canyon and selecting a preferred alternative. Alta Ski Area is	
supportive of any alternative that reduces traffic congestion and improves transportation in the canyon. We have reviewed the UDOT draft EIS and listened to or read many of the comments from individuals	
and entities regarding the draft EIS and offer the following comments for your consideration.	
Background	
Alta Ski Area is a year-round destination for more than 600,000 visitors annually and employs over 500 employees. Established in 1938, our visitors and employees have experienced a wide variety of travel	
conditions during the past 82 seasons. Personally, I have traveled the canyon 4-6 days a week, in a wide	
variety of conditions, for the past 32 years. Individually and collectively, we have seen and experienced the impact of snowfall, avalanches, mudslides, improperly equipped vehicles, and bus traffic in the	
canyon.	
Alta Ski Area Review	
Alta Ski Area recently completed a review of traffic flows (UDOT counts), average vehicle speeds (streetlight data), snowfall, temporary road closure data, parking counts and skier visitation levels for	
the 18-19 ski season to better understand traffic congestion issues and possible solutions in Little	
Cottonwood Canyon. The following was noted through our review process:	
Weather	
The primary cause of vehicle congestion and traffic delays related to Little Cottonwood Canyon is weather in the form of snowfall. Snowfall attracts more visitors to the canyon, often closes	32.1.4D
the mainline between Alta and Snowbird, reduces the traffic flow capacity of the road as it becomes slick and creates traffic backups due to closures for snow removal and avalanche	52.1.4D
becomes slick and creates traffic backups due to closures for show removal and avalanche mitigation work.	

Road Capacity Our review indicated that days when the road surface is only wet or dry, 5,000 – 6,000 vehicles per day have moved up and down the canyon with little congestion or delay. There were 42 days during the 18-19 ski season when more than 5,000 vehicles were in the canyon (an average of 5,815 vehicles per day). Our review showed the following:	
 Uphill average traffic flows were 659 vehicles (11.3 %) between 7 and 8 am, 1,012 vehicles (17.4%) between 8 and 9 am, 882 vehicles (15.2%) between 9 and 10 am and 613 vehicles (10.5%) between 10 and 11 am resulting in 54.4% of the daily uphill traffic traveling up the canyon between 7 and 11 am. 	
 Downhill average traffic flows were 699 vehicles (12%) between 2 and 3 pm, 963 vehicles (17%) between 3 and 4 pm, 1005 vehicles (17%) between 4 and 5 pm and 741 vehicles (13%) between 5 and 6 pm resulting in 59% of the downhill traffic traveling down the canyon between 2 and 6 pm. 	
Our review showed that that the current canyon road can effectively move approximately 1,000 vehicles per hour when the road is not slick and it is not snowing. Streetlight data analysis indicates average travel speeds are 35-38 mph between Entry 1 of Snowbird and the mouth of the Canyon when traffic flows are 1,000 vehicles per hour or more. At 35-38 mph it takes 12-13	32.1.4
minutes to travel from the Snowbird Entry 1 to the mouth of the Canyon.	32.1.4
Streetlight data overlaid on UDOT traffic counts, skier area visitation numbers, weather and road closure data shows that only a few days of the 42 days in our analysis had significant congestion or traffic delay. The vast majority of significant congestion or delays days occurred	32.7A
on when vehicle traffic in the canyon was less than 4,000 vehicles and was associated with significant snowfall or road closures. Weather is clearly the primary source of traffic congestion and delays in the canyon.	32.1.4
Snowfall & Traction Equipment Impact	
Snowfall in the canyon coupled with vehicles lacking proper traction equipment reduces the traffic flow capacity of the road resulting in congestion and delays. Our review showed that there were 28 days during the 2018-2019 ski season when 3 or more inches of snow fell during the day. During those 28 days an average of 3,775 vehicles per day were in the canyon and average peak down canyon traffic flow was reduced to 602 vehicles per hour.	
Streetlight data showed it is not uncommon for snowfall to reduce the safe traveling speed of vehicles with good traction devices to 25 mph or less. At 25 mph the traffic flow capacity is	

During storm periods traffic can only move as fast as the slowest vehicle and it is not uncommon to have vehicles lacking proper traction equipment traveling 10 mph or less down the canyon. At 10 mph traffic flow capacity is reduced to 300 vehicles per hour or less and travel time increases to 45-50 minutes.	
Our review confirmed that the traffic flow capacity of the canyon road is often reduced by more than 50% during storm cycles when the road is slick and vehicles without proper traction devices are in the canyon. This is without taking into consideration the impact of vehicles with improper traction devices sliding off the road, getting stuck or in accidents, or the delay time of vehicles waiting in parking lots to access the canyon road.	
It appears the current EIS draft has not identified this issue nor suggested solutions to address it. The math suggests removal of vehicles with improper traction devices from the canyon would reduce congestion and delays during storm periods <u>more</u> than removing 30% of the vehicles from the canyon.	32.2
For example, it takes approximately 2.85 hours to move 2,000 cars out of the canyon with proper traction devices moving at an average speed of 25 mph during a storm period. Whereas, it would take 4.67 hours to move 1,400 cars (30% less) without proper traction devices moving at an average speed of 10 mph. It appears that one of the most significant things we could do now to reduce congestion and delays in the canyon would be to limit Little Cottonwood Canyon to vehicles with proper traction devices during the winter months. Please include this issue and potential solutions in the final EIS.	
Superior Peak (Mainline) Road Closure Impact Our review also indicated that traffic flows down the canyon from the Town of Alta are also reduced when the road under Superior Peak (mainline) is closed for public safety purposes and all traffic exiting Alta is required to use the Bypass road. The Bypass road is a much steeper road that is problematic when it is snowing and also congests traffic by allowing more merge points from Snowbird traffic delaying the Alta traffic's exit from the Canyon.	32.2
The UDOT draft EIS does not appear to identify this issue or its impact on traffic congestion and delays. Installation of Remote Avalanche Control devices (RACs) in this area may allow avalanche mitigation work to be done during the day to keep the mainline open during peak travel times. Please consider inclusion of RACs in this area in the EIS alternatives to reduce the congestion and delays created by requiring all Alta traffic to exit via the Bypass road.	
Merging of Alta & Snowbird Traffic Our review and experience indicated traffic exiting the Town of Alta is often delayed by traffic exiting Snowbird (particularly when it is snowing), when the road is slick or has been closed for avalanche mitigation. Roadside parking and multiple entry points onto the State Road at Snowbird can result in up to 10 cars from Snowbird traveling down the canyon for every one car from Alta until the Snowbird parking areas are empty. It has not been uncommon for 85% of	32.2

32.2.2M

32.2.2TT

32.2.2UU

the vehicles parked at Snowbird to have merged onto the State Road and be below Entry 1 before 20% of the vehicles parked at Alta can exit Alta and be below Entry 1. When the traffic is congested due to weather, the commute for Alta visitors down the canyon is often an hour or more longer than for Snowbird visitors due to the merging of the Snowbird traffic onto the State Road.

The UDOT draft EIS has not addressed the impact of the number of traffic merge points at Snowbird onto the State Road and its impact on traffic congestion. Please include this issue in the final EIS and possible solutions such as signaling, a dedicated lane for Alta downhill traffic and keeping the mainline open.

Avalanche Mitigation Work

A common consequence of weather is closure of the road to perform avalanche mitigation work or for public safety. When it snows and the road is closed, traffic congestion develops on the traffic corridors and in the neighborhoods near the mouth of the canyon or at the ski areas as skiers queue up for the chance to ski the Greatest Snow on Earth.

Our review indicated that the road was closed at the mouth of the Canyon for avalanche mitigation work 12 days during the 18-19 ski season. Only two of those days had more than 5,000 vehicles in the canyon. These 12 days were the days the most congestion and delay occurred in the neighborhoods and arteries at the mouth of the canyon. Our review also showed that on road closure days the peak travel period for uphill traffic shifted from the 8 am to 9 am time period, to the 9 am to 10 am time period confirming traffic was queued up on the arteries and in the neighborhoods near the canyon.

The UDOT draft EIS does not address the impact that earlier completion of avalanche mitigation work would have on reducing congestion in the neighborhoods and arteries at the mouth of LCC nor suggest alternatives to complete the mitigation work earlier to reduce the congestion and delays. Please include this in the final EIS.

Currently, most avalanche mitigation work in the mid canyon and some withing the ski areas is done via a 105 Howitzer program. It is our understanding the Army plans to discontinue the Howitzer program by 2026. Does this apply to avalanche mitigation work to protect the highway? It appears that this issue has not been identified or addressed in the UDOT draft EIS. Can you please address this issue in the final EIS?

Other UDOT Draft EIS Observations and Comments

Tolling

The Draft EIS suggests tolling be included in the selected alternative to incentivize the use of public transportation. While tolling may encourage the use of public transportation it fails to effectively manage the limited supply of parking in the canyon. During the 20-21 ski season, there were 15 days when all the parking spaces in the Town of Alta were filled and hundreds of cars were turned away.

32.2.2VV

Tolling would not have discouraged people from driving a vehicle up the canyon and trying to find a parking spot when they were all occupied. Tolling is not an effective tool to manage traffic and parking when the available parking is limited.

Alta Ski Area will be implementing a paid parking reservation system during peak periods for the 21-22 ski season to manage parking and traffic congestion. The paid reservation system will incentivize car pooling and the use of public transit, as well as, reduce or eliminate the number of vehicles traveling to Alta when parking is full. We believe this is a much better solution than tolling. We request the final EIS recognize that parking reservations systems implemented by the ski areas would more effectively manage traffic and parking, incentivize car pooling, and encourage the use of public transit than tolling. It would also shift the cost and management responsibility of this issue to the ski areas.

Roadside Parking

Both alternatives in the UDOT draft EIS include the elimination of roadside parking at the ski areas and with ¼ mile of trailheads. While it was noted that roadside parking is the result of insufficient parking at the ski areas and trailheads, UDOT only proposed expansion of parking at trailheads outside of the ski areas on Forest Service lands. It seems a reasonable alternative associated with elimination of the roadside parking at the ski areas would be expansion of existing ski area parking areas. This alternative would improve public safety, reduce congestion, and allow roadside areas, particularly those through Snowbird to be used to alleviate traffic flow and merging issues. We request UDOT include recognition that roadside parking at the ski areas could be eliminated by allowing the ski areas to expand their current parking areas in the final EIS.

Snow Sheds

While Snow Sheds with an enhanced bus service may reduce the number of road closure days or length of time required for avalanche mitigation work, buses must still queue up wait until the road is open before they can begin to transport visitors up the canyon. The Gondola alternative allows a more consistent and reliable transportation alternative when the road is closed for avalanche mitigation work, avalanches, plowing, mudslides/rockslides, or accidents. This will reduce the amount of traffic queuing up in traffic corridors or neighborhoods while the road is closed. The Gondola alternative is also less impacted by avalanche mitigation work and snow removal and does not require avalanche sheds. We believe avalanche sheds can be removed from the Gondola alternative to reduce costs, as well as, encourage gondola ridership.

Alta Ski Area Recommendation

Of the two alternatives proposed in the UDOT draft EIS, Alta Ski Area believes the LaCaille Gondola alternative is a better long term transportation alternative than the enhanced bus alternative and we encourage UDOT to proceed with this alternative for the following reasons:

Weather - Weather and slick roads are the primary factors that create traffic congestion and delays in Little Cottonwood Canyon. The Gondola alternative provides another transportation alternative that does not involve the road during weather events when we experience the most traffic congestion and traffic delays. While the bus alternative may reduce the number of vehicles in the canyon, buses are still subject to the road conditions and often contribute to or are the cause of 32.2.4D 32.2.2WW 32.2.6.5Y

32.2.4C

32.2.9D

32.2.6.3P

congestion in the canyon during storm periods. Buses would not be able to travel the canyon any faster than the slowest vehicle resulting in travel times greater than the gondola alternative during storm periods when traffic congestion and delays occur. The gondola alternative provides visitors, residents, and employees a transportation alternative that does not involve the road surface and can provide a more consistent travel time in the canyon. The carrying capacity per hour of the gondola alternative would be more consistent during storm periods than road based alternatives such as buses.

Emergency Ingress and Egress - During the past two years we have experienced storms that have closed the road for several days due to avalanches and mudslides. During these closures, ingress and egress for emergencies have been restricted to helicopter service or via a snowcat, if conditions permit, which is often not the case. Fortunately, we have not had an ingress or egress emergency that has resulted in the loss of life during the past two years. The bus alternative does not improve the current ingress or egress issue when the road is closed, whereas the Gondola alternative provides an ingress and egress improvement which may save lives in an emergency.

Environmental Impact - The environmental impact of the bus alternative which includes widening the state road, building resort transit centers and installing avalanche sheds and the use of buses that rely on fossils fuels is significantly greater than gondola stations and towers and a system powered by electricity. The Gondola alternative also has less impact on our watershed, wildlife and existing trails and trailheads in the canyon than the enhanced bus alternative.

Canyon Mobility - An analysis of the visitor patterns in Little Cottonwood Canyon via Streetlight Data for 2018, 2019 and 2020 indicates that 86-88% of the vehicles that enter Little Cottonwood Canyon annually travel to Alta or Snowbird. Only 12-14% of the vehicles entering the canyon stop at other locations in the canyon. While an enhanced bus service may provide more frequency for those visiting other locations in the canyon, the additional time required to stop at other locations will negatively impact bus ridership. Current surveys from ski area visitors indicate the more stops a bus has once it enters the canyon, the less likely they are to use bus service. The Gondola option will provide a direct transportation option to Alta and Snowbird for the vast majority of the canyon visitors. Under the Gondola option, the current bus service could be re-purposed to provide enhanced service to locations lower in the canyon at no additional cost making the canyon mobility of the Gondola option better than the enhanced bus option.

Visitor Experience - The experience one has using public transportation can impact the likelihood of its acceptance and use. The Gondola alternative provides more seating, a more scenic ride and more reliable transportation than the enhanced bus alternative. The indoor loading and unloading in the gondola alternative also better accommodates visitors with disabilities and may reduce slip and fall injuries encountered by individuals entering and exiting buses.

Operational Issues - One of the challenges of the current bus transit system in Little Cottonwood Canyon is the seasonality of visitation in the canyon. This seasonality requires UTA to significantly 32.2.6.3P

32.2.6.5H

32.2.6.5Y, 32.2.6.3E, 32.10A, 32.18A, 32.4A, 32.4B, 32.12A, 32.12B, 32.13A, 32.13C, 32.17A, 32.17B

32.1.4D 32.2.6.3C, 32.2.6.3N

up up its service and employee base for the winter season which can be problematic. The nanced bus alternative will magnify this issue and require more staff to support and operate es than the Gondola alternative. The Gondola alternative seems less impacted by the sonality of visitation in the canyon and is less costly to operate and maintain.	32.2.7C
Solutions the proposed alternatives in the UDOT draft EIS will require at least 3-5 years or longer to fund and implement. Alta Ski area recommends UDOT implement the following interim	
is to address the current traffic congestion and delay issues:	32.29R
Since weather and slick road surfaces are the primary factors that result in traffic congestion, we strongly encourage UDOT implement the traction law in Little Cottonwood Canyon from November 1 to April 30 each year. Eliminating two-wheel drive vehicles without snow tires	32.2.2M
during the winter months would significantly reduce congestion and improve traffic flow in the canyon. Expansion of the current traction sticker program piloted in the canyon the past two season to all vehicles entering the canyon would significantly reduce congestion, accidents and slide offs when the road is slick.	
Reduce the avalanche mitigation work time frame and end canyon road closures earlier. Take measures to complete the avalanche mitigation work and snow removal earlier in the morning. Consider the purchase and installation of Remote Avalanche Control devices for the mid-canyon area to reduce the time required to complete avalanche mitigation work in the canyon. A	32.2.211
regular canyon opening time of 7:30 am would reduce congestion at the mouth of the canyon.	
Provide an area for vehicles to queue up early mornings when waiting for the canyon road to open that does not interfere with traffic flows on the arteries near the mouth of the canyon. Consider using the road shoulder or a third lane from gate B to the canyon mouth, on North Little Cottonwood road to Wasatch Boulevard and on Little Cottonwood Road to Wasatch Boulevard as queue areas for vehicles waiting for the canyon to open. Use the park and ride lot at the mouth of the canyon as the queue up area for UTA buses only.	32.2.200
Minimize road closures under Superior Peak. Purchase and install Remote Avalanche Control devices in the Superior area to allow mitigation work to be done during the day to enable the mainline to be open during peak travel times. This would reduce congestion and delays created by all Alta traffic exiting via the Bypass road.	32.2.2TT
Request and allow the ski areas to replace current roadside parking through expansion of existing parking lots. Closure of the roadside parking will improve public safety and reduce traffic congestion.	32.2.2WW
Improve the traffic merge of Alta and Snowbird visitors. Consider an additional downhill lane for Alta traffic (this would be facilitated by the removal of roadside parking) or traffic signals that	32.2.2UU
	anced bus alternative will magnify this issue and require more staff to support and operate es than the Gondola alternative. The Gondola alternative seems less impacted by the sonality of visitation in the canyon and is less costly to operate and maintain. Solutions the proposed alternatives in the UDOT draft EIS will require at least 3-5 years or longer to fund, and implement. Alta Ski Area recommends UDOT implement the following interim is to address the current traffic congestion and delay issues: Since weather and slick road surfaces are the primary factors that result in traffic congestion, we strongly encourage UDOT implement the traction law in Little Cottonwood Canyon from November 1 to April 30 each year. Eliminating two-wheel drive vehicles without snow tires during the winter months would significantly reduce congestion and improve traffic flow in the canyon. Expansion of the current traction sticker program piloted in the canyon the past two season to all vehicles entering the canyon would significantly reduce congestion, accidents and slide offs when the road is slick. Reduce the avalanche mitigation work time frame and end canyon road closures earlier. Take measures to complete the avalanche mitigation work and snow removal earlier in the morning. Consider the purchase and installation of Remote Avalanche Control devices for the mid-canyon area to reduce the time required to complete avalanche mitigation work in the canyon. A regular canyon opening time of 7:30 am would reduce congestion at the mouth of the canyon. Consider using the road shoulder or a third hane from gate B to the canyon mouth, on North Little Cottonwood road to Wasatch Boulevard and on Little Cottonwood Road to Wasatch Boulevard as queue areas for vehicles waiting for the canyon to open. Use the park and ride lot at the mouth of the canyon as the queue up area for UTA buses only. Minimize road closures under Superior Peak. Purchase and install Remote Avalanche Control devices in the Superior area to allow

Alta Ski Area requests these interim solutions be considered and addressed in UDOT's final EIS. We believe they can reduce congestion and delays while a longer term alternatives are implemented. We strongly encourage UDOT to refine and move forward these interim solutions.

Thank you for considering our comments.

Sincerely,

Michael R Maughan President and General Manager Alta Ski Area 32.29R

COMMENT #:	13321
DATE:	9/3/21 12:02 PM
SOURCE:	Website
NAME:	Jason Keith

COMMENT:

Little Cottonwood Canyon EIS Utah Department of Transportation c/o HDR 2825 E Cottonwood Parkway, Suite 200 Cottonwood Heights, UT 84|121

RE: American Mountain Guides Association Comments to Little Cottonwood Canyon Draft Environmental Impact Statement

UDOT Planners,

The American Mountain Guides Association (AMGA) welcomes this opportunity to submit comments to the Little Cottonwood Canyon (LCC) Environmental Impact Statement (EIS). In 2018 the Utah Department of Transportation (UDOT)-in partnership with Utah Transit Authority (UTA) and the U.S. Department of Agriculture Forest Service-began an EIS for LCC to provide an "integrated transportation system that improves the reliability, mobility and safety for residents, visitors, and commuters who use S.R. 210."

UDOT has identified two preferred alternatives in the Draft EIS: 1) the Enhanced Bus Service in Peak-Period Shoulder Lane, and 2) and the Gondola Alternative. AMGA opposes both preferred alternatives as they fail to address the transportation needs of all "users throughout the canyon, in particular dispersed recreational users. (32.2.9C, 32.2.9D, 32.1.2B, 32.1.2D, 32.2.7A, 32.7B, and 32.7C) Furthermore, the roadway widening included in the enhanced bus alternative requires the destruction of climbing resources and eliminates precious parking opportunities, while the gondola proposal would create unacceptable visual and noise impacts throughout the canyon negatively impacting the natural experience. Fundamentally, the EIS lacks any meaningful analysis regarding impacts to dispersed recreational users presented by UDOT's alternatives. (32.4A, 32.4B, 32.4I, 32.11D, 32.17A, and 32.17B)

American Mountain Guides Association

The American Mountain Guides Association is a 501(c)(3) educational non-profit organization that provides training and certification for climbing instructors, mountain guides, and ski guides throughout the United States. Founded in 1979, the AMGA has trained over 13,000 climbing and skiing guides who provide outdoor experiences for the general public that emphasize safety, stewardship, and education. As the American representative to the International Federation of Mountain Guide Associations (IFMGA), the AMGA institutes international standards for the mountain guiding profession in the United States and serves as an educational body for land managers, guide services, outdoor clubs, and other recreation stakeholders. The advocacy arm of the AMGA supports sustainable use of public lands, facilitates stewardship projects, and works in cooperation with guides and land managers to promote best practices and preserve access to areas utilized by the guided public.

UDOT proposes two highly destructive proposals to mitigate traffic problems in Little Cottonwood Canyon-the most popular climbing destination in the Wasatch Mountains which also has a long tradition as a training ground for Salt Lake climbers and mountain guides. Climbing guides and guide companies that are permitted in Little Cottonwood Canyon-either on private or US Forest Service lands-include: Utah Mountain Adventures, Red River Adventures, The Mountain Guides, Prival, Backcountry Pros, Aspect Adventures, Wasatch Mountain Guides, and Inspired Summit Adventures.

COMMENTS

AMGA believes that UDOT's transportation proposals will cause unacceptable impacts to Little Cottonwood Canyon because both the gondola and lane expansion proposals would destroy highly popular climbing areas while negatively impacting the natural experience at many others. Both of UDOT's preferred alternatives threaten classic and historic climbing areas throughout Little Cottonwood Canyon including at least 64 boulders and 273 boulder problems. The high degree of physical impacts proposed by these alternatives should be considered only after lesser destructive alternatives are analyzed in detail. The climbing community and local climbing guides have invested considerable time, energy, and resources into maintaining public access to areas in the planning area, such as Gate Buttress and its parking area. These efforts have included significant public outreach and the formation of mutually-beneficial partnerships with stakeholders such as The Church of Jesus Christ of Latter-day Saints. The UDOT proposals would significantly reduce parking, damage the climbing resource, and impact access trails in precisely the locations where the climbing community and other stakeholders have invested so much effort to preserve public access. (32.4A, 32.4B, 32.4I, 32.4G, 32.4N, and 32.4P)

Further, UDOT's transportation proposals appear to cater solely to the ski areas at the top of the canyon while ignoring impacts to year-round dispersed recreation access throughout all of Little Cottonwood Canyon. (32.1.2B, 32.1.2C, 32.1.2D, 32.2.7A, 32.7B, and 32.7C) Both UDOT proposals would significantly reduce parking for dispersed recreation throughout the canyon, including areas highly frequented by climbing guides and their clients. (32.4A, 32.4B, and 32.4P) UDOT's proposed parking lot "improvements" would severely limit access to the most popular climbing in the canyon by dramatically reducing the already limited parking currently available at the Gate Buttress, Grit Mill, and at the lower Little Cottonwood Park and Ride. The EIS should consider the needs of dispersed recreation users, including their transportation options such as maintaining the level of year-round parking options. (32.4N and 32.4P)

UDOT's limited range of alternatives fails to meet the purpose of this project which seeks to "deliver transportation options that meet the needs of the community while preserving the value of the Wasatch Mountains." Indeed, the preferred alternatives ignore the needs of the dispersed recreation " "community-including mountain guides and their clients-while permanently degrading the value of Little Cottonwood Canyon by developing industrial transportation infrastructure. (32.1.2D and 32.4I) Instead, we urge UDOT to develop a new alternative centered on expanded bus service combined with other traffic mitigation strategies such as tolling, while also preserving the parking needs of dispersed recreational users throughout the canyon. (32.2.9A and 32.2.4A)

Alternatives such as UDOT's preferred alternatives cause a high degree of permanent physical impacts should be pursued only after less impactful alternatives have been developed. (32.2.2PP and 32.29R) UDOT must find a new alternative that considers the needs of the dispersed recreation community before it permanently scars the historic and highly valued climbing resources in Little Cottonwood Canyon.

Sincerely,

Jason Keith Senior Policy Advisor American Mountain Guides Association

EMAIL

September 3, 2021 12:08PM

UDOT planners:

Please find attached comments to the UDOT Little Cottonwood Canyon EIS from the American Mountain Guides Association, a 501(c)(3) educational non-profit organization that provides training and certification for climbing instructors, mountain guides, and ski guides throughout the United States.

Please feel free to contact me directly with any questions or comments that you may have about AMGA's comment letter.

Sincerely,

Jason Keith American Mountain Guides Association https://amga.com September 3, 2021 American Mountain Guides Association 4720 Walnut Street, Suite 200 Boulder, CO 80301 (P) 303.271.0984 | (F) 720.336.3663 www.amga.com | info@amga.com

September 3, 2021

Little Cottonwood Canyon EIS Utah Department of Transportation c/o HDR 2825 E Cottonwood Parkway, Suite 200 Cottonwood Heights, UT 84121

RE: American Mountain Guides Association Comments to Little Cottonwood Canyon Draft Environmental Impact Statement

UDOT Planners,

The American Mountain Guides Association (AMGA) welcomes this opportunity to submit comments to the Little Cottonwood Canyon (LCC) Environmental Impact Statement (EIS). In 2018 the Utah Department of Transportation (UDOT)—in partnership with Utah Transit Authority (UTA) and the U.S. Department of Agriculture Forest Service—began an EIS for LCC to provide an "integrated transportation system that improves the reliability, mobility and safety for residents, visitors, and commuters who use S.R. 210."

UDOT has identified two preferred alternatives in the Draft EIS: 1) the Enhanced Bus Service in Peak-Period Shoulder Lane, and 2) and the Gondola Alternative. AMGA opposes both preferred alternatives as they fail to address the transportation needs of all users throughout the canyon, in particular dispersed recreational users. Furthermore, the roadway widening included in the enhanced bus alternative requires the destruction of climbing resources and eliminates precious parking opportunities, while the gondola proposal would create unacceptable visual and noise impacts throughout the canyon negatively impacting the natural experience. Fundamentally, the EIS lacks any meaningful analysis regarding impacts to dispersed recreational users presented by UDOT's alternatives.

American Mountain Guides Association

The American Mountain Guides Association is a 501(c)(3) educational non-profit organization that provides training and certification for climbing instructors, mountain guides, and ski guides throughout the United States. Founded in 1979, the AMGA has trained over 13,000 climbing and skiing guides who provide outdoor experiences for the general public that emphasize safety, stewardship, and education. As the American representative to the International Federation of Mountain Guide Associations (IFMGA), the AMGA institutes international standards for the mountain guiding profession in the United States and serves as an educational body for land managers, guide services, outdoor clubs, and other recreation stakeholders. The advocacy arm of the AMGA supports sustainable use of public lands, facilitates stewardship projects, and works in cooperation with guides and land managers to promote best practices and preserve access to areas utilized by the guided public.

Responses to this letter are provided in the email comment above, which is identifical to the letter. UDOT proposes two highly destructive proposals to mitigate traffic problems in Little Cottonwood Canyon—the most popular climbing destination in the Wasatch Mountains which also has a long tradition as a training ground for Salt Lake climbers and mountain guides. Climbing guides and guide companies that are permitted in Little Cottonwood Canyon—either on private or US Forest Service lands—include: Utah Mountain Adventures, Red River Adventures, The Mountain Guides, Prival, Backcountry Pros, Aspect Adventures, Wasatch Mountain Guides, and Inspired Summit Adventures.

COMMENTS

AMGA believes that UDOT's transportation proposals will cause unacceptable impacts to Little Cottonwood Canyon because both the gondola and lane expansion proposals would destroy highly popular climbing areas while negatively impacting the natural experience at many others. Both of UDOT's preferred alternatives threaten classic and historic climbing areas throughout Little Cottonwood Canyon including at least <u>64</u> boulders and <u>273</u> boulder problems. The high degree of physical impacts proposed by these alternatives should be considered only after lesser destructive alternatives are analyzed in detail. The climbing community and local climbing guides have invested considerable time, energy, and resources into maintaining public access to areas in the planning area, such as Gate Buttress and its parking area. These efforts have included significant public outreach and the formation of mutually-beneficial partnerships with stakeholders such as The Church of Jesus Christ of Latter-day Saints. The UDOT proposals would significantly reduce parking, damage the climbing resource, and impact access trails in precisely the locations where the climbing community and other stakeholders have invested so much effort to preserve public access.

Further, UDOT's transportation proposals appear to cater solely to the ski areas at the top of the canyon while ignoring impacts to year-round dispersed recreation access throughout all of Little Cottonwood Canyon. Both UDOT proposals would significantly reduce parking for dispersed recreation throughout the canyon, including areas highly frequented by climbing guides and their clients. UDOT's proposed parking lot "improvements" would severely limit access to the most popular climbing in the canyon by dramatically reducing the already limited parking currently available at the <u>Gate Buttress</u>, Grit Mill, and at the lower Little Cottonwood Park and Ride. The EIS should consider the needs of dispersed recreation users, including their transportation options such as maintaining the level of year-round parking options.

UDOT's limited range of alternatives fails to meet the purpose of this project which seeks to "deliver transportation options that meet the needs of the community while preserving the value of the Wasatch Mountains." Indeed, the preferred alternatives ignore the needs of the dispersed recreation community—including mountain guides and their clients—while permanently degrading the value of Little Cottonwood Canyon by developing industrial transportation infrastructure. Instead, we urge UDOT to develop a new alternative centered on expanded bus service combined with other traffic mitigation strategies such as tolling, while also preserving the parking needs of dispersed recreational users throughout the canyon.

2

AMGA | Boulder, CO | 80301 | 303.271.0984 | www.amga.com | info@amga.com

Alternatives such as UDOT's preferred alternatives cause a high degree of permanent physical impacts should be pursued only after less impactful alternatives have been developed. UDOT must find a new alternative that considers the needs of the dispersed recreation community before it permanently scars the historic and highly valued climbing resources in Little Cottonwood Canyon.

Sincerely,

Jason Keith Senior Policy Advisor American Mountain Guides Association

AMGA | Boulder, CO | 80301 | 303.271.0984 | www.amga.com | info@amga.com

3